
Facilitating Team-Based Programming Learning with Web
Audio

Anna Xambó
Department of Music

Norwegian University of
Science and Technology

(NTNU)
Trondheim, Norway

anna.xambo@ntnu.no

Robin Støckert
Department of Mathematical

Sciences
NTNU

Trondheim, Norway
robin.stockert@ntnu.no

Alexander Refsum
Jensenius

RITMO
Department of Musicology

University of Oslo
Oslo, Norway

a.r.jensenius@imv.uio.no

Sigurd Saue
Department of Music

NTNU
Trondheim, Norway

sigurd.saue@ntnu.no

ABSTRACT
In this paper, we present a course of audio programming us-
ing web audio technologies addressed to an interdisciplinary
group of master students who are mostly novices in program-
ming. This course is held in two connected university cam-
puses through a portal space and the students are expected
to work in cross-campus teams. The course promotes both in-
dividual and group work and is based on ideas from science,
technology, engineering, arts and mathematics (STEAM)
education, team-based learning (TBL) and project-based
learning. We show the outcomes of this course, discuss the
students’ feedback and reflect on the results. We found that it
is important to provide individual vs. group work, to use the
same code editor for consistent follow-up and to be able to
share the screen to solve individual questions. Other aspects
inherent to the master (e.g. intensity of the courses, coding
in a research-oriented program) and to prior knowledge (e.g.
web technologies) should be reconsidered. We conclude with
a wider reflection on the challenges and potentials of using
web audio as a programming environment for novices in TBL
cross-campus courses and how to foster effective novices.

1. INTRODUCTION
The 21st century brings sophisticated information and

communication technologies different from the 20th century,
which is the reason why school curriculums are changing to
a new culture of learning and the promotion of a new set of
skills, the “21st century skills” [6, 11]. Programming can be
considered an important component of technology literacy,
which is one of the identified skills of the 21st century [11].
There are no written rules on how to teach programming,
but there exist studies with recommended teaching tech-

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2019, December 4–6, 2019, Trondheim, Norway.

c© 2019 Copyright held by the owner/author(s).

niques, especially looking at how novices learn to program.
In particular, Robins [15] distinguishes between effective and
ineffective novices, and suggests to focus on promoting effec-
tive novices. A relevant factor is motivation, which can be
enhanced with more interdisciplinary ways of learning, such
as science, technology, engineering, arts, and mathematics
(STEAM) education [7]. It has been reported that teaching
programming based on STEAM promotes higher level of cre-
ativity [21] and can attract the interest of underrepresented
populations in computing fields [8].

The NTNU-funded project Student Active Learning in
a Two Campuses Organization (SALTO) aims to promote
cross-campus learning as an open laboratory [17], where
novel student-active learning strategies are investigated, such
as computer-supported collaborative learning [16], flipping
classroom [2] and team-based learning (TBL) [10]. Cross-
site interaction is framed as a future scenario in education
(e.g. teaching and learning environments) and work (e.g.
working environments). The combination of simultaneous
co-located vs. remote interactions is mediated through low-
latency audiovisual and communication technologies.

A new international master has been launched within this
educational scheme: Music, Communication, and Technol-
ogy (MCT),1 which is a master’s program in collaboration
between the Norwegian University of Science and Technology
(NTNU) in Trondheim, Norway, and the University of Oslo
(UiO) in Oslo, Norway. The program centres around the
field of music technology from a research perspective in a
cross-campus setting. The students work in cross-campus
teams, which are interdisciplinary, and they have different
levels of expertise in STEM fields, such as programming.

As part of the master’s program, most of the master courses
are offered in a condensed format of two full-day weeks (eight
days in total) so that students can focus on one subject at a
time and can have more flexibility in their schedule. This can
be especially useful for technical subjects, so that students
focus on the same technology for a certain period of time. In
our previous study on a physical computing workshop [20],

1https://www.ntnu.edu/studies/mmct



we found that the use of hybrid technologies to teach phys-
ical computing to mixed-levels cross-campus groups was a
complicated environment for novices in programming. In this
paper, we present instead the results of an intense course in
audio programming, only taught with web audio technologies,
which is a recommended tool for novices [1].

The research question that this paper addresses is: What
are the challenges and opportunities of using web audio to
teach audio programming to a mixed cohort of students mostly
novices in programming? We collected students’ feedback and
reflected on the students’ outcomes and comments. Overall,
the results indicate that we can recommend to use web audio
to teach audio programming to a mixed group of mostly
novices, if there is a fair combination of individual and group
work, the students and teacher use the same code editor for
consistency, and it is possible at all times to share the code
between the teacher, smaller groups and the whole class to
promote debugging in a collaborative context. However, pre-
knowledge should be required in web technologies and basic
programming, as well as focus the teaching on strategies
instead of knowledge, in order to promote “effective novices”.

2. BACKGROUND
Our previous research highlighted how collaborative mu-

sic live coding (CMLC), which refers to the combination
of the music improvisation practice of live coding and col-
laborative programming, is a promising learning strategy
of programming [19]. In a more recent study on teaching
physical computing to mostly novices [20], we also found that
programming is a difficult skill to learn in a short period
of time, as opposed to prototyping. As noticed by Robins
et al.: “It is generally accepted that it takes about 10 years
of experience to turn a novice into an expert programmer.”
[15, p.137] and therefore Robins et al. recommend to present
material that addresses basic program design.

Web audio technologies have been successfully used in
programming courses based on STEAM principles. For ex-
ample, it was used in a summer programming music camp
[1] to teach creative coding concepts through music by using
different web audio libraries and frameworks, such as Gibber
[14] and Tone.js [9]. Other courses are more focused on a par-
ticular library or environment. The Quint.js is a JavaScript
library that combines visuals and audio to create interactive
audiovisual programs, and was used to teach music technol-
ogy concepts (e.g., trigonometry and wave motion, additive
synthesis, Fourier analysis, pitch spiral, noise spiral) to fine
arts students [3]. EarSketch is a learning environment and
curriculum that promotes to learn how to code by making
music among middle school, high school and undergraduate
students, an environment reported to broaden participation
in computing and music, particularly women [8]. Codecircle
is a browser-based system for learning creative coding that
supports real-time graphics and sound [21].

In this paper, we present a course of audio programming us-
ing web audio technologies addressed to an interdisciplinary
group of master students, who are mostly novices in pro-
gramming. We used a similar approach to [1] of exposing
the students to different libraries and frameworks, with the
final aim of creating their own project. However, our course
was longer so we also included native web audio to facili-
tate the understanding of these higher-level environments.
We promoted both individual but also cross-campus group
projects.

3. THE COURSE

3.1 Context
The MCT4048 Audio Programming course is an elective

master course held in Spring that aims to provide a solid
foundation in digital signal processing and audio-based appli-
cation development. The integration of relevant technologies
and platforms plays an important part to develop user-ready
applications. There are a number of reasons for choosing
web audio technologies for this course, namely:

• It is written in JavaScript, one modern programming
language.

• It is easy to sketch ideas and get prototypes built.

• It is easy to test, implement, and distribute.

• It showcases the fundamental concepts of audio pro-
gramming.

• It gives room for artistic expression.

• It is an employable skill.

• We will be hosting the Web Audio Conference 2019.2

The students have a multidisciplinary background ranging
from digital humanities, to music technology, to engineering.
Their backgrounds in programming skills are varied, predom-
inantly novices. In this course edition, the number of total
students was 11 between the two campuses, with 4 students
in the Oslo site and 7 students in the Trondheim site, and
two women. The group was international with students from
Europe and Asia.

3.2 Curriculum
This course combines lectures and hands-on activities,

whose slides and code are available online.3 The lectures
provide an overview of the fundamental concepts of audio pro-
gramming. The hands-on workshops are based on building
web applications using web audio technologies, both indi-
vidually and in team. The evaluation of the course consists
of measuring the daily activity and two mini-projects that
incorporate the theory and practice seen in class.

Given that this course belongs to a research-based master,
it combines research-based activities with development ac-
tivities. The course spans 7 hours per day during 8 days (56
hours in 2 weeks). We allocate some time at the beginning
of each session to set up the computers with the tools for
the tutorial of the day. The first week is named “The Funda-
mentals” and the students are asked to develop an individual
mini-project. This allows each student to work individually,
familiarize themselves with the programming environment
and find their way of expression. The second week is named
“The Extensions” and the students are asked to develop a
group mini-project. Next we show the general outline of the
course by day:

1. Introduction Day: Paper discussion about languages
for computer music [5]. Discussion about what is and
why to use the Web Audio API. Discussion and exercise
about pseudocode.

2https://ntnu.edu/wac2019
3https://github.com/axambo/
audio-programming-workshop



Web Audio

Pros

Easy to distribute

There’s no need of plugins

Multiple online resources

Works well on the Internet

Accessible content

It is open source

It enhances the user experience

There’s no need of external libraries

There’s a large community of 
experts in JavaScript

Cons

Difficult for beginners

It really depends on you prior 
knowledge

Requires knowledge on web 
technologies (HTML, JavaScript, 
CSS)

Variability (dependent on security, 
APIs, external libraries, outdated/
new versions)

What is Web Audio?

Working with audio on the web 
browser

Based on JavaScript

Uses JavaScript to run lower-level 
code

Figure 1: Mind map generated in class from a group discussion about what is web audio.

2. Day 1: Warm-up activity: what is Web Audio, pros
and cons (see Figure 1). Tutorial of playing sounds and
individual mini-project development.

3. Day 2: Warm-up activity: a round of one sentence
each about something learned the previous day in class.
Tutorial of dealing with time using Tone.js [9], and indi-
vidual mini-project development. Speedy presentations
of the mini-projects.

4. Day 3: WAC paper presentations (first half of the
group, one paper per student). Tutorial of dealing with
sound effects and individual mini-project development.
Speedy presentations of the mini-projects.

5. Day 4: WAC paper presentations part 2 (second half of
the group, one paper per student). Tutorial of graphical
user interfaces using NexusUI.js [18], and mini-project
development. Final presentations of the individual
mini-projects.

6. Day 5: Warm-up activity: Recap quiz of week 1. Tu-
torial of dealing with interactivity using Web MIDI
API4 and group mini-project development.

7. Day 6: Warm-up activity: what do we know about live
coding. Tutorial of live coding using Gibber [14], and
group mini-project development. Speedy presentations
of the mini-projects.

8. Day 7: Tutorial of mobile music and responsive design,
and group mini-project development. Speedy presenta-
tions of the mini-projects.

9. Day 8: Tutorial of AudioWorklets [4, 12, 13], and
group mini-project development. Final presentations
of the group mini-projects.

3.3 Outcomes
During the first week, the students developed a total num-

ber of 10 individual mini-projects, whilst in the second week,
4http://webaudio.github.io/web-midi-api

the students developed three group mini-projects. A total
number of 13 blog posts about each mini-project can be
found online in the student-led MCT blog.5

Next, a brief description of the three group mini-projects
is provided:

• Touch the Alien (Team A) – A web audio synth which
offers touchscreen functionality; a combination of oscil-
lators, FM oscillator, delay, phaser, chorus, and filter on
dry/wet slider; and an interactive canvas user interface
to control the filters. The technologies used include
Javascript with the Web Audio API, CSS, HTML5, the
audio effects library Tuna, and a smartphone or tablet.

• The Magic Piano (Team B) – A piano that plays the
right notes of the chosen melody regardless of whether
the player hits the right or wrong key. The technolo-
gies used include Web MIDI API, NexusUI.js, Tone.js,
JSON, CSS and a MIDI keyboard.

• Convolverizer (Team C) – Real-time processing of am-
bient sound, voice or live instruments. The technologies
used include P5.js, a sound card or audio interface, a
guitar, and a Shure SM57 microphone.

The three group mini-projects were successful in comple-
tion. Although varied in theme, there are some similarities:
They (1) build on the code developed individually during the
previous week (except for Team C who built on knowledge
from the physical computing workshop), with the challenge
of merging their code and working with collaborative coding
approaches, both co-located and remote; (2) use a range
of web audio and web technologies, some of them seen in
class but some of them explored autonomously or in previous
courses, which showcases the understanding of the spirit of
prototyping in finding the best tools and combining them
to convey a project idea; and (3) combine software with
hardware, building on previous knowledge from the physical
computing workshop.
5https://mct-master.github.io/audio-programming



0%

11%

0%

0%

33%

56%

22%

33%

33%

22%

78%

56%

33%

89%

67%

56%

56%

44%

33%

33%

22%

22%

22%

11%

11%

11%

11%

22%

44%

44%

22%

11%

44%

44%

44%

56%

11%

33%

56%

Q13

Q12

Q11

Q10

Q9

Q8

Q7

Q6

Q5

Q4

Q3

Q2

Q1

100 50 0 50 100
Percentage

Response 1 2 3 4 5

(a) Bar plot of the pre-questionnaire responses.

0%

0%

11%

22%

22%

11%

11%

33%

11%

11%

22%

33%

33%

89%

89%

89%

56%

56%

56%

44%

44%

44%

33%

33%

22%

22%

11%

11%

0%

22%

22%

33%

44%

22%

44%

56%

44%

44%

44%

Q13

Q12

Q11

Q10

Q9

Q8

Q7

Q6

Q5

Q4

Q3

Q2

Q1

100 50 0 50 100
Percentage

Response 1 2 3 4 5

(b) Bar plot of the post-questionnaire responses.

Figure 2: Bar plot for the results of thirteen (Q1–Q13) 5-point Likert-item questions (n = 9).
Questions: Q1 programming; Q2 computational thinking; Q3 prototyping; Q4 instrument building; Q5 reflective practice; Q6 teamworking; Q7

individual working; Q8 continue STEM courses; Q9 continue STEM education; Q10 future use of STEM knowledge; Q11 understanding of audio

programming; Q12 understanding of programming interactive musical prototypes; and Q13 programming interactive musical prototypes.

4. STUDENTS’ FEEDBACK
Adapted from our previous physical computing work-

shop [20], we distributed among students a voluntary pre-
questionnaire and post-questionnaire with the same 5-point
Likert-item questions. The questions ranged from asking
the level of confidence (1 = not at all confident; 2 = a little
confident; 3 = somewhat confident; 4 = highly confident; 5
= extremely confident) about their ability for programming
(Q1), computational thinking (Q2), prototyping (Q3), instru-
ment building (Q4), reflective practice (Q5), teamworking
(Q6), and individual working (Q7). There were also questions
that asked the level of agreement (1 = strongly disagree; 2 =
disagree; 3 = neutral; 4 = agree; 5 = strongly agree) about
a set of statements on their intention to continue courses
related to STEM fields (Q8), to continue their education
in STEM fields (Q9), and to use their STEM knowledge in
their future careers (Q10). They were also asked their level
of agreement of the extent to which they can understand the
purpose of audio programming (Q11), describe the process
of programming an interactive musical prototype (Q12), and
apply the technique of programming an interactive musical
prototype to their work (Q13). The questionnaire also in-
cluded three open questions about what the students liked
best and least about the course and how the course could be
improved.

We obtained responses from 11 students in total, out of
which 9 students responded the paired questionnaire (n = 9).

Of the course, the students liked best:

• Learning content (4 occurrences): “broadening the
perspective” (U8); “learning new libraries and frame-

works” (U4); “learning the basic building blocks of the
Web Audio API” (U2); “learning live coding” (U2).

• Learning process and course outcomes (3 occur-
rences): “more security and confidence in programming”
(U3); “build applications” (U1); “collaborative working”
(U5).

• Course design (4 occurrences): “freedom for creativ-
ity” (U7); “work hands-on on the code and learn it”
(U10); “the combination of lessons and hands-on prac-
tice and prototyping” (U9); “fun to learn how to code”
(U6).

The students liked least:

• Be a novice programmer (4 occurrences): “lack of
basic programming skills” (U8); “not knowing how to
program” (U3); “individual working was hard without
asking permanently for help” (U5); “as a beginner the
need of basic content for a longer period of time” (U9).

• Intensive course format and remote program-
ming in teams (4 occurrences): “too short and con-
densed” (U1); “a bit too fast and packed” (U10); “only 2
weeks in the whole semester seems to be a pity!” (U9);
“hard to collaborate with coding over distances” (U6).

• Mixed groups and research-based programming
course (2 occurrences): “added complexity of working
with other web technologies, which can take a bit of focus
away from audio programming” (U2); “too much focus
on other things than programming (blog, presentation)”
(U4).



Students’ suggestions on how to improve the course in-
cluded:

• Avoid intensive course format (4 occurrences):
“making it less intense and more spread during the term”
(U8); “extend to more then 2 weeks workshop” (U1);
“adding another week and slowing down the process will
help for absolute beginners a lot” (U10); “we could have
learnt more if the course had run for a longer period
of time” (U9).

• Request pre-knowledge in programming and
web technologies (3 occurrences): “having a basic
level of training in the beginning” (U8); “required pre-
knowledge in programming from all students” (U4); “an
introductory lecture or two in the absolute basics in
coding” (U7).

• Satisfy both novices and experts (3 occurrences):
“the course was well taught, even though the level was
very high, more time needed to evaluate” (U3); “the way
it was this year would suit more for students with prior
understanding of programming to some level” (U9);
“more clearly defined incremental tasks related to the
curriculum, which should also have the possibility of
extra challenges for those that are on a higher level”
(U2).

Figure 2 shows the percentages of the level of confi-
dence and agreement, which tended to be more positive
in the post-questionnaire (Mdn=4, M =3.47) than in the
pre-questionnaire (Mdn=3, M =3.09). These results align
with the results from our previous course in physical com-
puting [20], which indicate that the pedagogical techniques
are in a positive direction. The level of confidence of pro-
gramming (Q1), together with the level of prototyping (Q3)
and instrument building (Q4) slightly improved, providing
at least little more confidence. This contrasts with the level
of confidence of programming achieved in the physical com-
puting workshop, which was one of the less developed skills.
The intention to continue STEM courses (Q8) and STEM
education (Q9) improves slightly, again in alignment with our
previous study. The understanding of audio programming
(Q11) polarised a little bit more in the post-questionnaire,
probably associated with the need of learning additional tools
related to web development (as discussed earlier in the open
questions). The level of confidence of teamworking (Q6) and
reflective practice (Q5) slightly increased from an already
high score, two aspects that are explicitly promoted across
the different master’s courses. The level of confidence of
individual work (Q7) changed from extreme to moderate
positive and negative opinions. Individual work was an im-
portant component of this course during the first week, it
seems to be valued by the students, but it needs to be better
integrated so that both experts and novices acknowledge an
improvement.

5. REFLECTIONS
This section reflects on the students’ feedback presented

in the previous section combined with the reflections of the
teacher of the course (first author). Overall, learning how
to program is a slow endeavor, and team-based program-
ming can be a helpful approach. There are five prominent
themes that are worth of discussion: (1) individual vs. group

work; (2) shared coding experiences; (3) web audio vs. web
technologies; (4) research vs. code; and (5) fast-paced vs.
slow-paced teaching.

5.1 Individual vs. Group Work
The sequence of individual work during the first week

and group work during the second week generally worked
well. The students developed an individual language and
style using web audio technologies, which was helpful for
the collaborative work in the following week. This is similar
to the need of individual rehearsal with your own musical
instrument to first define your voice before meeting with a
group to collaborate musically. Prior knowledge to the course
that could be acquired includes basic programming and how
to merge code from different contributors. The additional
asset of this course, compared to other similar courses (e.g.,
[1]), is using TBL to solve problems that have a higher level
of complexity than when working individually. The shareable
nature of web technologies (e.g. easy exchange and execution
of code snippets) seems to align well with TBL activities.

5.2 Shared Coding Experiences
Although not directly reported in the students’ feedback,

at the beginning of the course the teacher and students de-
cided to work with the same code editor (Visual Studio Code)
and web browser (Chrome). This facilitated that all students
could follow the hands-on tutorials and could debug in col-
laboration or show their problems to the teacher or group
if needed. Considering that this course should be taught
by only one teacher to cross-campus scenarios of at least
one co-located group and one remote group, the real-time
audiovisual and screen share communication becomes crucial.
With this approach, there were occurrences of expert students
helping novices, therefore a student’s problem could often
become a group problem, and everyone was learning from
each other, in terms of both errors and discoveries. Both the
infrastructure of the portal with network-connected working
rooms and the use of the same programming environment
and language with shareability capabilities seemed to help.

5.3 Web Audio vs. Web Technologies
Novices were sometimes overwhelmed with the need to

learn not only web audio, but also web technologies. By con-
trast, experts were sometimes expecting more focus on web
audio and put less attention to web technologies. Although
web audio can be a suitable tool for learning audio program-
ming, novices should fulfil the pre-knowledge requirements of
already knowing the basics about web technologies. Similarly,
the basics of programming should be also a pre-requisite in
order to balance better novices vs. experts. As suggested by
Robins [15], it is important to focus on teaching strategies as
opposed to knowledge in order to promote “effective novices”,
who become proficient in solving programming problems.

5.4 Research vs. Code
Teaching an audio programming course at a research-based

master implies combining hands-on practical work with the-
ory and reflection. However, we found that novices were
expecting to also learn how to code, whilst experts were
expecting to code more. The meaning of a research-based
course in audio programming should probably be emphasized
at a master level and reinforced at a course level, so that
students’ expectations are closer to the nature of the master.



5.5 Fast-paced vs. Slow-paced Teaching
The students’ feedback suggests to expand or reconsider

the intensity of the course. An option can be to link better
this course with other courses, so that the students perceive
a continuous learning path across courses. Given that some
students report the need of more formal teaching or more
time to consolidate their knowledge, perhaps there could be
curated resources that help the students to continue by their
own if they want to, similar to the curriculum of EarSketch
[8].

6. CONCLUSIONS
In this paper, we presented an audio programming course

using web audio technologies targeted to an interdisciplinary
group of master students who are mostly novices in program-
ming. Students’ feedback and teacher’s reflections indicated
that web audio technologies is a suitable approach to novices
in programming if web technologies and basic programming
are requested as prior knowledge. The projects resulted from
working in teams have shown the potential of addressing com-
plexity with creativity and collaboration, which was partly
possible due to the prior individual work. It is still challeng-
ing to teach programming across two campuses, but applying
techniques from collaborative live coding (e.g. sharing the
screen and the code editor) can positively counterbalance the
issue. We expect that in the second edition of this course we
will foster better “effective novices”, so that the two intense
weeks can be even more fruitful. In future work, we plan to
study with a larger number of students; understand which
features of web audio enhance collaboration in TBL activities;
and investigate whether web audio works better for TBL
activities compared to native environments (e.g. C++ audio
library, Max or SuperCollider). We also hope to explore
more the potential of teaching audio programming with web
audio for STEAM education, TBL and distance learning.

7. ACKNOWLEDGMENTS
The authors wish to thank the students who participated in

the course. Also thanks to the MCT teachers Daniel Formo,
Anders Tveit and Kristian Nymoen for their technical help.
This work was partially supported by the NTNU SALTO
project (80340480).

8. REFERENCES
[1] J. Allison, D. Holmes, Z. Berkowitz, A. Pfalz,

W. Conlin, N. Hwang, and B. Taylor. Programming
Music Camp: Using Web Audio to Teach Creative
Coding. In Proc. Web Audio Conference, 2016.

[2] J. Bergmann and A. Sams. Flip Your Classroom: Reach
Every Student in Every Class Every Day. International
Society for Technology in Education, Eugene, OR,
USA, 2012.

[3] I. G. Burleigh and T. Schaller. Quint.js: A JavaScript
Library for Teaching Music Technology to Fine Arts
Students. In Proc. Web Audio Conference, 2015.

[4] H. Choi. AudioWorklet: The Future of Web Audio. In
Proc. International Computer Music Conference, 2018.

[5] R. B. Dannenberg. Languages for Computer Music.
Frontiers in Digital Humanities, 5:26, 2018.

[6] C. Dede. Comparing Frameworks for 21st Century
Skills. 21st Century Skills: Rethinking How Students
Learn, 20:51–76, 2010.

[7] J. Maeda. STEM + Art = STEAM. The STEAM
Journal, 1(1):34, 2013.

[8] B. Magerko, J. Freeman, T. Mcklin, M. Reilly,
E. Livingston, S. Mccoid, and A. Crews-Brown.
Earsketch: A STEAM-based Approach for
Underrepresented Populations in High School
Computer Science Education. ACM Transactions on
Computing Education, 16(4):14, 2016.

[9] Y. Mann. Interactive Music with Tone.js. In Proc. Web
Audio Conference, 2015.

[10] L. K. Michaelsen, A. B. Knight, and L. D. Fink.
Team-based Learning: A Transformative Use of Small
Groups in College Teaching. Stylus Pub, 2004.

[11] B. Pearlman. Making 21st Century Schools: Creating
Learner-Centered Schoolplaces/Workplaces for a New
Culture of Students at Work. Educational Technology,
pages 14–19, 2009.

[12] C. Roberts. Strategies for Per-Sample Processing of
Audio Graphs in the Browser. In Proc. Web Audio
Conference, 2017.

[13] C. Roberts. Metaprogramming Strategies for
AudioWorklets. In Proc. Web Audio Conference, 2018.

[14] C. Roberts and J. Kuchera-Morin. Gibber: Live Coding
Audio in the Browser. In Proc. International Computer
Music Conference, 2012.

[15] A. Robins, J. Rountree, and N. Rountree. Learning and
Teaching Programming: A Review and Discussion.
Computer Science Education, 13(2):137–172, 2003.

[16] G. Stahl, T. D. Koschmann, and D. D. Suthers.
Computer-Supported Collaborative Learning. na, 2006.

[17] R. Støckert, A. R. Jensenius, and S. Saue. Framework
for a Novel Two-Campus Master’s Programme in
Music, Communication and Technology Between the
University of Oslo and the Norwegian University of
Science and Technology in Trondheim. In Proc.
International Conference of Education, Research and
Innovation, pages 5831–5840, 2017.

[18] B. Taylor, J. T. Allison, W. Conlin, Y. Oh, and
D. Holmes. Simplified Expressive Mobile Development
with NexusUI, NexusUp, and NexusDrop. In Proc. New
Interfaces for Musical Expression, pages 257–262, 2014.

[19] A. Xambó, G. Roma, P. Shah, T. Tsuchiya, J. Freeman,
and B. Magerko. Turn-taking and Online Chatting in
Co-located and Remote Collaborative Music Live
Coding. Journal of the Audio Engineering Society,
66(4):253–266, 2018.

[20] A. Xambó, S. Saue, A. R. Jensenius, R. Støckert, and
Ø. Brandtsegg. NIME Prototyping in Teams: A
Participatory Approach to Teaching Physical
Computing. In Proc. New Interfaces for Musical
Expression, 2019.

[21] M. Yee-King, M. Grierson, and M. d’Inverno. STEAM
WORKS: Student Coders Experiment More and
Experimenters Gain Higher Grades. In Proc. IEEE
Global Engineering Education Conference, pages
359–366. IEEE, 2017.


