
Xambó et al. Preprint

Preprint version. This is the author’s final version, the article has been accepted for publication in The

Computer Music Journal: Anna Xambó, Alexander Lerch, and Jason Freeman (2019). Music Information

Retrieval in Live Coding: A Theoretical Framework. Computer Music Journal, 42:4, Winter 2018, 9–25.

Please refer to the published version here: https://doi.org/10.1162/comj_a_00484.

Music Information Retrieval in Live Coding: A
Theoretical Framework

Anna Xambó

Department of Music

Norwegian University of Science and Technology

7491 Trondheim

Norway

anna.xambo@ntnu.no

Alexander Lerch

Center for Music Technology

Georgia Institute of Technology

840 McMillan St NW, 30332 Atlanta (GA)

USA

alexander.lerch@gatech.edu

Jason Freeman

Center for Music Technology

Georgia Institute of Technology

840 McMillan St NW, 30332 Atlanta (GA)

USA

jason.freeman@gatech.edu

https://doi.org/10.1162/comj_a_00484

Xambó et al. Preprint

Abstract

Music information retrieval (MIR) has a great potential in musical live coding (LC)

because it can help the musician/programmer to make musical decisions based on audio

content analysis (ACA) and explore new sonorities by means of MIR techniques. The use

of real-time MIR techniques can be computationally demanding and thus they have been

rarely used in LC and with a focus on low-level feature extraction. This article surveys

and discusses the potential of MIR applied to LC at a higher musical level. We propose

a conceptual framework of three categories: (1) audio repurposing, (2) audio rewiring

and (3) audio remixing. We explored the three categories in live performance through

an application programming interface (API) library written in SuperCollider, MIRLC.

We found that it is still a technical challenge to use high-level features in real time, yet

using rhythmic and tonal properties (mid-level features) in combination with text-based

information (e.g., tags) helps to achieve a closer perceptual level centered on pitch and

rhythm when using MIR in LC. We discuss challenges and future directions of utilizing

MIR approaches in the computer music field.

Introduction

Music live coding (LC) is a music improvisation practice that is based on generating

code in real time by either writing it directly or using interactive programming (Brown

2006; Collins, McLean, Rohrhuber, and Ward 2007; Freeman and Troyer 2011; Rohrhuber,

de Campo, Wieser, van Kampen, Ho, and Hölzl 2007). Music information retrieval (MIR)

is an interdisciplinary research field that targets, generally speaking, the analysis and

retrieval of music-related information, with a focus on extracting information from audio

recordings (Lerch 2012). Applying MIR techniques to live coding can contribute to the

music generation process, both creatively and computationally. A potential scenario

would be to create categorizations of audio streams and extract information on timbre

Xambó et al. Preprint

and performance content, as well as drive semi-automatic audio remixing, enabling the

live coder to focus on high-level musical properties and decisions. Another potential

scenario is to be able to model a high-level music space with certain algorithmic behaviors

and allow the live coder to combine the semi-automatic retrieval of sounds from both

crowdsourced and personal databases.

This article explores the challenges and opportunities that MIR techniques can offer

to LC practices. Its main contributions are: a survey review of the state of the art of

MIR in LC, a categorization of approaches to LC using MIR illustrated with examples,

an implementation in SuperCollider of the three approaches, which are demonstrated,

respectively, in test-bed performances and a discussion of future directions of real-time

computer music generation based on MIR techniques.

Background

In this section, we overview the state of the art of live coding environments and MIR

related to live performance applications.

Live Coding Programming Languages

The terms of live coding language and live coding environment, which support the

activity of music live coding, will be used interchangeably in the following. Programming

languages that have been used for LC include ChucK (Wang 2008), Extempore (previously

Impromptu) (Sorensen 2018), FoxDot (Kirkbride 2016), Overtone (Aaron and Blackwell

2013), Sonic Pi (Aaron and Blackwell 2013), SuperCollider (McCartney 2002), TidalCycles

(McLean and Wiggins 2010), Max/MSP and Pd (Puckette 2002), and Scratch (Resnick,

Maloney, Monroy-Hernández, Rusk et al. 2009). With the advent and development of

JavaScript and Web Audio, a new generation of numerous web-based LC programming

languages has emerged, e.g., Gibber (Roberts and Kuchera-Morin 2012). Visual live coding

Xambó et al. Preprint

is also an emerging practice, notably with Hydra (github.com/ojack/hydra) and Cyril

(cyrilcode.com).

MIR in Commercial Software for Live Performance

Real-time MIR has been researched and implemented in mainstream software

ranging from: digital audio workstations (DAWs) such as Ableton Live, karaoke

software such as Karaoki (pcdj.com/karaoke-software/karaoki) and My Voice Karaoke

(emediamusic.com/karaoke-software/my-voice-karaoke.html), DJ software such as Trak-

tor (native-instruments.com/en/products/traktor), Dex 3 (pcdj.com/dj-software/dex-3),

and Algoriddim’s Djay Pro 2 (algoriddim.com) and song retrieval or query-by-humming

applications such as Midomi (midomi.com) and SoundHound (soundhound.com). Typi-

cally, these solutions include specialized MIR tasks, such as pitch tracking for the karaoke

software, and beat and key detection for the DJ software. In these applications, the MIR

tasks are focused on high-level musical information (as opposed to low-level feature extrac-

tion) and, thus, inspires this research. There already exist collaborations or conversations

between industry and research looking at real-time MIR applied to composition, editing,

and performance (Bernardini, Serra, Leman, and Widmer 2007; Serra, Magas, Benetos,

Chudy et al. 2013). To our knowledge, there is little research on the synergies between

MIR in musical live coding and MIR in commercial software. The present article aims to

help fill that gap.

Real-Time Feature Extraction Tools for LC Environments

In this section, we present a largely chronological and functional analysis of existing

MIR tools for LC and interactive programming to understand the characteristics and

properties of the features supported, identify the core set of features, and discuss whether

the existing tools satisfy the requirements of live coders.

https://github.com/ojack/hydra
http://cyrilcode.com/
http://www.pcdj.com/karaoke-software/karaoki/
http://www.emediamusic.com/karaoke-software/my-voice-karaoke.html
https://www.native-instruments.com/en/products/traktor/
http://www.pcdj.com/dj-software/dex-3/
https://www.algoriddim.com/
https://www.midomi.com/
https://soundhound.com/

Xambó et al. Preprint

Table 1. Some MIR tools for LC environments.

Library Type MIR Tool Authors LC Environment

Included

• Unit Analyzer (UAna) Wang et al. (2007) ChucK
• fiddle∼, bonk∼ and sigmund∼
objects

Puckette et al. (1998) Max/MSP

• Built-in UGens for machine
listening

SuperCollider community SuperCollider

Third-party

SMIRK Fiebrink et al. (2008) ChucK
LibXtract Bullock (2007) Max/MSP, SuperCollider
Zsa.Descriptors Malt and Jourdan (2008) Max/MSP
analyzer∼ object Tristan Jehan Max/MSP
Mubu Schnell et al. (2009) Max/MSP
SCMIR Collins (2011) SuperCollider
Freesound quark Gerard Roma SuperCollider

Nearly all MIR systems extract a certain intermediate feature representation from

the input audio and use this representation for inference, for example, classification or

regression. Although still an open debate, there is some common ground in the MIR

literature about the categorization of audio features between low-, mid-, and high-level.

Lerch (2012) refers to low-level features as instantaneous features, extracted from small

blocks of audio and describing various, mostly technical properties such as the spectral

shape, intensity, or a simple characterization of pitched content. Serra, Magas, Benetos,

Chudy et al. (2013) refer to tonal and temporal descriptors as mid-level features. High-level

features usually describe semantic characteristics, e.g., emotion, mood, musical form, and

style (Lerch 2012), or overall musical, cultural, and psychological characteristics, such as

genre, harmony, mood, rhythm, and tonality (Serra, Magas, Benetos, Chudy et al. 2013).

The distinction between low-, mid-, and high-level audio features is used here because it

provides enough level of granularity that it can be useful to the live coder.

Various audio feature extraction tools for LC have existed for some time. In the

following, we present an overview of existing tools for the three environments ChucK

(Wang 2008), Max/MSP (Puckette 2002), and SuperCollider (McCartney 2002), because

Xambó et al. Preprint

of their popularity, extensive functionality, and maturity. The findings and conclusions,

however, are generalizable to other LC environments. The selection of MIR tools for

analysis, which aims to be illustrative, is described in Table 1.

Figure 1 shows a timeline of the analyzed MIR tools from 1990s to present, which

provides a historical and technological perspective of the evolution of the programming

environments and dependent libraries. As shown in Figure 2a, the LC environment

that includes most audio features is SuperCollider, whilst the third-party libraries with

the largest number of features are LibXtract and FFSound, the latter as a wrapper of

the Essentia framework. Figure 2b shows the distribution of the audio features over 6

categories (statistical, envelope, intensity, timbre, temporal, and tonal), which are inspired

by Essentia’s organization (Bogdanov, Wack, Gómez, Gulati et al. 2013) and Lerch’s feature

classification (2012).

The timbre audio features are the greatest in number (43% of the total). The most

popular spectral features are spectral centroid, spectral rolloff, spectral spread, and Mel

Frequency Cepstral Coefficients (MFCCs), followed by the less popular but still prominent

spectral flatness and spectral flux. Statistical audio features is the second category with

stronger representation (16% of the total), with zero crossing rate as the most frequently

implemented. The larger supported intensity audio features are loudness and RMS. In

temporal audio features, beat tracker and onset detection are the most present. Finally,

there is a considerable amount of tonal audio features (15% of the total), where pitch (F0)

is the only feature supported extensively.

Considering the most popular features mentioned above, it is noticeable that the

majority are low-level (instantaneous) features (e.g., RMS, spectral centroid). These features

have been widely used in audio content analysis (ACA), for example, to classify audio

signals. In LC, they can be helpful to determine audiovisual changes in real time, yet the

amount of data can be overwhelming and most of the extracted features are not musically

Xambó et al. Preprint

Max Max/MSP
SC1 SC2 SC3

analyzer~
ChucK

LibXtract (SC)
SMIRK (ChucK)
Zsa.Descriptors (Max/MSP)

MuBu (Max/MSP)
SCMIR (SC)

FSquark (SC)

 fiddle~/bonk~

SuperCollider release

free GNU/GPL software
 Max 5

 Max 6

 Max 7

 ChucK 1.3.5.2

 SCMIR 1.5

 Max 8

1990 2000 2010

Zsa.Descriptors (Max/MSP)

Freesound quark (SC)

Max/MSP
SuperCollider

analyzer~ (Max/MSP)
ChucK

LibXtract (SC)
SMIRK (ChucK)

MuBu (Max/MSP)
SCMIR (SC)

Figure 1. Timeline of LC programming languages and dependent MIR tools.

meaningful (e.g., how to interpret continuous float values of MFCCs). Mid-level features,

such as onsets and tonality, can be easier interpreted and can be used to characterize

rhythmic and tonal properties, supporting the live coder to make content-driven decisions

(e.g., a threshold value can indicate whether or not to trigger a percussive sound depending

on the onset values).

It is noteworthy that the presented real-time MIR tools provide the coder only with

few mid-level features and show a lack of high-level features (Figure 2a). As later discussed

in this article, the use of high-level features (e.g., mood, genre) requires a longer time scope,

and systems extracting high-level features are often error prone (e.g., see the semantic gap

problem between low-level descriptors and semantic descriptors (Schedl, Gómez, Urbano

et al. 2014)). This may affect the performance negatively, compared to the immediacy and

ease of use of instantaneous low-level features. At the same time, if the technical issues

were solved, high-level information could increase the richness and musicality of the live

coding session as the live coder could make decisions from a musical perspective of, e.g.,

the overall musical form.

Xambó et al. Preprint

5

10

15

20

25

30

35

40

45

N
u

m
b

e
r

o
f

a
u

d
io

 f
e
a
tu

re
s

0

50

Tools

M
ax

/M
SP

Sup
er

C
ol

lid
er

an
al
yz

er
~

U
Ana

Li
bXtra

ct

SM
IR

K

Zsa
.D

M
ub

u

SC
M

IR

Low-level features Midlevel features

Fr
ee

so
un

d

qua
rk

(a) Distribution of audio features by number and low-/mid-level audio
features.

5 10 15 20 25

To
o

ls

Max/MSP

SuperCollider

analyzer~

UAna

LibXtract

SMIRK

Zsa.D

Mubu

SCMIR

Number of audio features

0 30

Statistical Envelope Intensity Timbre
Temporal Tonal

Freesound quark

(Essentia)

(b) Distribution of audio features by categories.

Figure 2. Functional analysis of MIR tools for LC.

Conceptual Framework on MIR in Live Coding

The presented conceptual framework structures MIR approaches for LC in three non-

exclusive categories: (1) audio repurposing, by which we mean the analysis, retrieval, and

manipulation of audio clips from a sound or music database, (2) audio rewiring, by which

Xambó et al. Preprint

we mean the real-time analysis of an audio input signal, which can be both an external

source or the output of the system itself and (3) audio remixing, by which we mean a

system supporting musically meaningful remixing decisions semi-autonomously.

For each of the three categories, we present three prototypes, respectively. The aim

is to provide a conceptual foundation that helps us to discuss future possibilities. The

three prototypes have been developed as three separate modules that comprise Music

Information Retrieval for Live Coding (MIRLC) (github.com/axambo/MIRLC), an application

programming interface (API) library written in SuperCollider that is designed to provide a

musical approach to using MIR techniques in LC.

Audio Repurposing

Since the advent of the social web, sound sharing and retrieval from online databases

(e.g., Freesound, Looperman, ccMixter) has become increasingly popular (Font, Roma, and

Serra 2017). Sounds are identified and retrieved by parsing either user-annotated data

(e.g., tags, annotations, descriptions) or automatically extracted data. Font, Roma, and

Serra (2017) identify two types of queries in audio retrieval based on features: (1) queries

by range of a property, i.e., retrieval of sounds that match a given interval or threshold

filtered by one or multiple audio features and (2) queries by similarity, i.e., retrieval of

similar sounds from a given example. An example of the former is giving a range of bpm

values to find specific rhythmic sounds. The latter has been notably explored for sound

synthesis techniques such as musical mosaicing (Zils and Pachet 2001), concatenative

sound synthesis (Schwarz 2007), or mashups (Serra, Magas, Benetos, Chudy et al. 2013) by

retrieving short sounds similar to a reference. Other useful queries are by category, e.g.,

instrument or genre.

Figure 3 illustrates a block diagram of the audio repurposing approach in live coding,

where the live coder can retrieve sounds from either online databases or local databases.

http://github.com/axambo/MIRLC

Xambó et al. Preprint

MIRLC API: High-level live-coding access to content-based querying.

MIR Client: Search and retrieve audio with content-based search capabilities.

LC Language: Client of the live-coding environment.

Audio

LIVE CODER
INPUT

MIR
CLIENT

LC
LANGUAGE

FEATURE
DATABASE

SOUND
DATABASE

Text

MIRLC API

SPEAKERS

LC ENVIRONMENT

Figure 3. Block diagram of audio repurposing.

The retrieved sounds will be processed and integrated into the performance using live

coding techniques. For efficient audio retrieval in quasi-real-time, a common practice is to

pre-analyze the sound database and store its feature representation, thus combining the

time-consuming offline analysis with ad-hoc access to pre-computed features and meta

data of the audio clips (Serra, Magas, Benetos, Chudy et al. 2013). Typically, the offline

analysis uses a feature extractor program and stores the information of each audio file

as a single vector containing the aggregated audio features (Font, Roma, and Serra 2017).

The LC language deals with low-level operations of real-time audio processing, such as

loading sounds in buffers, which implies processing blocks of audio samples in real time.

Examples of Audio Repurposing

Current examples of audio repurposing in LC retrieve audio clips usually by textual

queries from personal or online databases, as shown in LC coding sessions with Gibber

(youtu.be/uly7DgtfRKI?t=96) or Tidal (youtu.be/FenTeBMkAsQ?t=275), as well as media

clips with Live Coding YouTube (Lee, Bang, and Essl 2017), and even any type of input

http://youtu.be/uly7DgtfRKI?t=96
http://youtu.be/FenTeBMkAsQ?t=275

Xambó et al. Preprint

data (Tsuchiya, Freeman, and Lerner 2016). Similarly, in Gibberwocky, multiple audio clips

are also used from an already selected collection of sounds by means of a DAW interface

such as Ableton Live connected to Gibber (Roberts and Wakefield 2017).

Exploring a wider range of scenarios, notable examples of machine listening sys-

tems can be found, particularly in art installations, live performances, and educa-

tional tools. These examples, which can inform future LC applications, include EarS-

ketch (Xambó, Lerch, and Freeman 2016), Floop (Roma and Serra 2015), Freesound Ex-

plorer (Font, Roma, and Serra 2017), BBCut (Collins 2002), the LoopMashVST plugin

(youtu.be/SuwVV9zBq5g), and APICultor (Ordiales and Bruno 2017), among others.

These systems represent audio clips by content-based feature analysis, and often retrieve

them in combination with text-based information (e.g., tags). With the exception of APICul-

tor, they use a combination of low-level features (e.g., timbral properties) with mid-level

features (e.g., temporal and tonal properties) for browsing sounds. Floop, for instance,

looks into the beat spectrum to see how rhythmic a sound is. However, these systems

are highly constrained to particular use cases. Most of them are based on audio clips

constrained to particular features, e.g., their rhythm (Floop), beat (BBCut) or timbre (Loop-

MashVST). During a LC session, it can be desirable to retrieve sound samples without

such constraints. According to Font, Roma, and Serra (2017), a sound database can include

both short recordings (e.g., acoustic events, audio fragments) and long recordings (e.g.,

music, speech, environmental sound scenes). Low-level features, such as MFCCs, can be

used in most types of sounds (e.g., environmental sounds, speech, music), while higher

level features usually make assumptions of the input (e.g., detectable onsets and pitches,

identifiable tonality, minimum length to detect rhythmic properties). As in APICultor, a

LC system should have the flexibility of filtering the results by the choice of multiple audio

features. However, there are computational challenges respective to feature aggregation

that limit the length and content of this approach. Using an online database with pre-

analyzed audio features seems like a workable approach for LC, which can be combined

http://youtu.be/SuwVV9zBq5g

Xambó et al. Preprint

Figure 4. The first author livecoding with MIRLC at Noiselets 2017, Freedonia, Barcelona, Spain.
Photo by Helena Coll.

with a pre-analyzed local database, as discussed in previous work (Xambó, Roma, Lerch,

Barthet, and Fazekas 2018).

The use of visualization tools (e.g., a two-dimensional space) for exploring the

database content, as illustrated in EarSketch, Floop and Freesound Explorer, can allow

for efficient browsing in a LC context. As discussed, this approach requires an offline

analysis and each new query can disrupt the existing sound output if it is not designed for

live performance. An example of an interactive visual timbral map for sound browsing

suitable for live performance is found in a demo of SCMIR (youtu.be/jxo4StjV0Cg). As

shown in this demo, using visualization techniques to show browse-and-query processes

is a compelling addition to the LC practice, yet it broadens the definition of LC because

visual media is added to the coding environment, as explored by others (Lee, Bang, and

Essl 2017; McLean and Wiggins 2010; Roberts and Wakefield 2017; Tsuchiya, Freeman, and

Lerner 2016).

http://youtu.be/jxo4StjV0Cg

Xambó et al. Preprint

Prototype 1: A Case Study for Exploring Audio Repurposing

This prototype aims at providing a high-level musical approach to operate with

audio clips in LC using MIR, as previously discussed and assessed (Xambó, Roma, Lerch,

Barthet, and Fazekas 2018). Figure 4 shows a test-bed performance using this module. It is

designed for repurposing audio samples from Freesound using SuperCollider (online at

vimeo.com/249968326). This module is built on top of the Freesound quark (github.com/g-

roma/Freesound.sc), a SuperCollider client for accessing audio clips from Freesound

through the Freesound API. The benefit of using the Freesound archive is that it allows to

browse almost 400,000 sounds either by text search, content search, or a combination of

both.

Inspired by the web interface Freesound Radio (Roma, Herrera, and Serra 2009), this

module promotes loading sounds in a meaningful musical way. The live coder has a

range of options to retrieve sounds, including mid- and high-level content-based queries

(e.g., duration, bpm, pitch, key, scale) and text-based queries (i.e., tags). Sounds can be

retrieved in groups, which facilitates the creation of conceptually-related sound groups

based on similarity, rhythm, or pitch, among others. Each sound is played in loop and the

groups can be played either simultaneously or sequentially. This provides different levels

of musical granularity. The main functionalities include asynchronous management of

multiple sounds by a single query or operation; human-like queries by content, similarity,

tag, filter, sound id, and random; and an architecture to play with the groups of sounds

either in sequence or in parallel. Figure 5 shows an example of the code.

In this case study, the role of LC is to query, browse, and control the audio clips in real

time. LC sends out high-level textual (e.g., tags) and content-based queries (e.g., pitch,

bpm, key, or scale), the latter based on MIR information, with the intent of crafting a

coherent sound palette. Using MIR techniques removes the requirement of individually

knowing each sound to create a homogeneous and coherent sound pool. The combination

http://vimeo.com/249968326
http://github.com/g-roma/Freesound.sc
http://github.com/g-roma/Freesound.sc

Xambó et al. Preprint

/ / i n s t a n t i a t i o n
a = MIRLCRep . new
b = MIRLCRep . new

/ / g e t sounds by c o n t e n t
a . content (1 , ’ p i t c h ’ , 22000 , ’ conf ’ , ’ hi ’)
b . content (1 , ’ dur ’ , 0 . 0 1 , ’ conf ’ , ’ hi ’)

(t = Routine ({ / / c r e a t i o n o f a c o n t r o l s t r u c t u r e f o r s e q u e n c i n g
var d e l t a ;
loop {

d e l t a = rrand (2 , 10) ; / / g e n e r a t e a random number be tween 2 and 10
i f ([f a l s e , t rue] . choose , / / c h o o s e wi th e q u a l c h a n c e t h e v a l u e o f f a l s e o r t r u e

{ a . s i m i l a r } , / / i f t r u e : g e t a s i m i l a r sound from f i r s t sound in group a
{ b . s i m i l a r } / / i f f a l s e : g e t a s i m i l a r sound from f i r s t sound in group b

) ;
d e l t a . y i e l d ; / / amount o f t ime in s e c o n d s u n t i l t h e r o u t i n e s h o u l d e x e c u t e a g a i n

}
}) ;)

t . play / / p l a y t h e r o u t i n e d e f i n e d a b o v e

(r = Routine ({ / / c r e a t i o n o f a n o t h e r c o n t r o l s t r u c t u r e f o r s e q u e n c i n g
var d e l t a ;
loop {

/ / g e n e r a t e a random number be tween 0 .0005 and 0 . 3
d e l t a = rrand (0 . 0 5 , 3) * rrand (0 . 0 1 , 0 . 1) ;
i f ([f a l s e , t rue] . choose ,

{ b . sequence } , / / i f t r u e : p l a y sounds o f group b in s e q u e n c e
{ b . p a r a l l e l } / / i f f a l s e : p l a y sounds o f group b in p a r a l l e l

) ;
d e l t a . y i e l d ;

}
}) ;)

r . play

Figure 5. Example of code of the audio repurposing prototype (code extract from the album H2RI
by the first author (pan y rosas, 2018)).

of metadata with ACA provides flexibility and variation to the performance. It is possible

to search for sounds based on different criteria such as rhythm, melody, duration and

harmony. The use of the similarity descriptor can give musically consistent results yet

they are still unpredictable, which evidences that defining music similarity is a nontrivial

question (Lerch 2012). As future work, the MIR processes that are taking place could

be made more visible to both the audience and the live coder using textual feedback,

following the notion of ‘showing the screen’ in live coding. Next steps of interest include

the use of even higher-level content-based features (e.g., mood, genre) to be combined with

textual-based queries. In the current version, the use of tags has worked as a workaround

Xambó et al. Preprint

MIRLC API

MIR
LIBRARIES

LC
LANGUAGE

LIVE CODER
INPUT

SPEAKERS

LC ENVIRONMENT
Audio

Control

(FEEDBACK)

(FEEDBACK)

MICROPHONE/
LINE IN

Figure 6. Block diagram of audio rewiring.

(e.g., "happy", "sad", "angry", "excited", "techno", "drumbeat", "dancehall").

Audio Rewiring

The use of an audio stream as an input is a common practice in interactive computer

music and machine listening (Chadabe 1984; Rowe 1993, 2001). The advent of sufficiently

fast computers and suitable software has made feature analysis of the audio input signal

possible in real time. Mapping the analysis results to sound processing parameters opens

a range of creative possibilities for both studio and live performance, with prominent

examples such as auto-tune or intelligent harmonizers. Furthermore, the audio output

signal can be fed back to the input of the system to create a feedback system, a practice that

dates back decades. Audio feedback has been extensively used in computer music, either

as analog audio feedback, digital audio feedback, or both (Sanfilippo and Valle 2013).

Figure 6 shows the block diagram of the audio rewiring approach, in which the live

coder receives an incoming audio stream (e.g., mic, line in, output of the system). The

real-time analysis of this audio signal is used to define control or audio signals of the

system. The LC language processes the incoming audio in real time using buffers.

Xambó et al. Preprint

Examples of Audio Rewiring

There are notable examples of live coding systems making use of this paradigm,

including the BBCut2 library (Collins 2006), the Beatboxing classifier (Stowell and Plumb-

ley 2010), the Algoravethmic remix system (Collins 2015), and McLean and Sicchio’s

(2013) Sound Choreography <> Body Code (vimeo.com/62323808). Beyond live cod-

ing, some examples combine hardware and real-time audio analysis, e.g., the Machine

Listening Eurorack module (Latina 2016). Similarly, there exist sound installations with

feedback and real-time analysis, such as Sanfilippo and Valle’s (2013) Rumentario Autoed-

ule (vimeo.com/37148011) and Agostino Di Scipio’s Audible Ecosystems (Sanfilippo and

Valle 2013). These examples extract numerous low-level features (e.g., spectral features)

and a small subset of mid-level features (e.g., tonal and temporal characteristics). There

exist, however, constraints that can limit their usability. In BBCut2, for example, the audio

has to be recorded before being able to apply effects, which adds a delay not ideal in a

real-time scenario. Similarly, in the Beatboxing classifier, even with workarounds in place,

latency cannot easily be avoided and remains an issue for real-time performance. This

indicates the importance of considering these constraints when designing an algorithmic

or compositional system for performance. The feedback component of audio rewiring

adds risk of failure to the performance and at the same time it can bring interesting results.

Audio feedback can potentially make the overall system unstable, however, this insta-

bility can also be used artistically and can be creatively incorporated into a performance

(compare, e.g., artists such as Sonic Arts Union, Loud Objects, Gordon Mumma).

Prototype 2: A Case Study for Exploring Audio Rewiring

This prototype aims at providing a high-level musical approach to operate with in-

coming audio (e.g., acoustic instrument, voice) in LC using MIR. It is designed for rewiring

an audio input signal as either a control signal or audio signal using MIR techniques in

SuperCollider (online at vimeo.com/249997271). An early version of the prototype has

http://vimeo.com/62323808
http://vimeo.com/37148011
http://vimeo.com/249997271

Xambó et al. Preprint

Figure 7. Closeup of Anna Weisling’s Distaff system, NIME 2017, Stengade, Copenhagen, Den-
mark. Photo by Jimmi Brandt Fotos.

been used in the piece Beacon (Weisling and Xambó 2018), a collaborative audiovisual work

between a visualist and an electronic musician, which has been internationally acclaimed

(Lee, Jo, Weisling, Xambó, and McCarthy 2018). The visualist works with the Distaff

system (see Figure 7), a DIY modified Technics turntable (Weisling 2017). The sound of

the performer’s fingers interacting with the turntable (e.g., scratching, tipping) as well as

the inner mechanical sounds of the device produced from these interactions, are captured

with a lavalier mic located inside the wooden box that contains the mechanical parts of

the original turntable. Audio features extracted from the audio input signal either control

effects applied to the audio signal or parameters of other audio signals. In this prototype,

we explore unidirectional control (as opposed to a feedback loop).

An example of code is shown in Figure 8. The use of an audio input signal with

different roles throughout the piece (e.g., audio signal, control signal) provides versatility

and a wide range of variation. LC is used to change the role of the audio input signal.

Feature analysis of the audio signal is applied to either control a sound generator (e.g.,

an estimated beat from the source system triggers a kick drum sound) or to modulate an

effect parameter (e.g., an estimated onset from the source system modulates a multigrain

effect). The rhythmical nature of the audio source shapes the mappings, thus the mapping

design can be reconsidered when using a less percussive sound source, e.g., a voice.

Xambó et al. Preprint

/ / i n s t a n t i a t i o n
a = MIRLCRew. new(1 , " afro−beat−6−8−toms . wav")

/ / s t a r t i n g o n s e t d e t e c t i o n with a b e e p s t y l e sound
a . onsets (’ beep ’ , 1) ;

(r = Routine ({ / / c r e a t i o n o f a c o n t r o l s t r u c t u r e f o r s e q u e n c i n g
var del ta , option ;
loop {

d e l t a = 4 . 0 ;
d e l t a . y i e l d ; / / amount o f t ime in s e c o n d s u n t i l t h e r o u t i n e s h o u l d e x e c u t e a g a i n

/ / i f t h e modulus o f 4 from t h e t o t a l number o f o n s e t s has r e m a i n d e r 0
/ / (4 c l o c k w i s e s e q u e n c e)
i f (MIRLCRew. counter % 4 == 0 ,

{
/ / c h o o s e wi th e q u a l c h a n c e one o f t h e 4 o p t i o n s
option = [’ p i t c h ’ , ’ beats ’ , ’ onsets ’ , ’amps ’] . choose ;
case

{ option == ’ p i t c h ’ }
{ a . p i t c h } / / p i t c h f o l l o w e r

{ option == ’ beats ’ }
{ a . beats } / / b e a t t r a c k e r

{ option == ’ onsets ’ }
{ a . onsets (’ beep ’ , 1) } / / o n s e t d e t e c t o r

{ option == ’amps ’ }
{ a . amps (’ spark ’) } / / p eak a m p l i t u d e t r a c k i n g with a p e r c u s s i v e sound

}) ;
}

}) ;)

r . play / / p l a y t h e r o u t i n e d e f i n e d a b o v e

Figure 8. Example of code of the audio rewiring prototype.

The presented prototype uncovered some conceptual drawbacks. Although a high

level of synchronicity was noticed, the audience was unaware of the role of LC for gen-

erating sound and the general system setup involving the audio/control signal from the

turntable. Furthermore, in collaborations between a live coder and a visualist, there can

be a conflict of how to make both processes visible when visuals are so prominent. Previ-

ous research discusses that both approaches (opacity vs. transparency) are equally used

and combined in audiovisual performance (Weisling, Xambó, Olowe, and Barthet 2018).

The decision of creating a more immersive environment by not focusing the audience’s

attention on a screen with code extends the spectrum of live coding practices. Given the

nature of the piece, a sound palette and algorithmic rules had to be defined ahead for each

section, where improvisation was determined by the score of the piece. As future work, we

Xambó et al. Preprint

plan to design a less constrained environment by adding more flexibility to the mappings

so that more ad hoc decisions can be made in real time, similar to UrSound (Essl 2010)

and Gibber (Roberts, Wright, Kuchera-Morin, and Höllerer 2014). As an interesting future

work, a challenge is the use of higher level audio features (e.g., mood, genre) to make

decisions in real time. This would require a latency for accurate classification of events

and the application of strategies for working around this processing delay, as discussed in

Stowell and Plumbley (2010).

Audio Remixing

There is a long tradition of network music in computer music (Weinberg 2005; Xambó

2015). The key terms and characteristics of network music include different types of

network organization (e.g., centralized vs. decentralized, hierarchical vs. egalitarian), roles

between performers (e.g., soloist vs. accompanist, producing sound vs. modifying sound),

control (e.g., shared vs. individual), and types of contribution (e.g., parallel, serial, circular,

multi-directional) (Xambó 2015). This is helpful to understand the nature of network music

examples and how LC takes place using MIR on a musical network, typically applied to

live remixing multiple audio streams.

Figure 9 outlines a block diagram of the audio remixing approach, where the live

coder receives multiple audio streams (e.g., mic, line in, output of the system, and so

on). The real-time analysis of the audio signals is used to help the live coder taking

semi-autonomous decisions about the live remix.

Examples of Audio Remixing

There are illustrative examples of systems that use MIR in real time for mediating

multiple audio streams, such as algorithmic systems (e.g., OFFAL’s Union and Flock pieces

(Knotts 2016)) and live sound visualization systems (e.g., FEATUR.UX (Olowe, Barthet,

Grierson, and Bryan-Kinns 2016)). The use of multiple audio input streams combined

Xambó et al. Preprint

MIRLC API

MIR

LIBRARIES

LC

LANGUAGE

LIVE CODER

INPUT

SPEAKERS

LC ENVIRONMENT

MICROPHONE/

LINE IN

Audio

Control

MICROPHONE/

LINE IN

MICROPHONE/

LINE IN

Figure 9. Block diagram of audio remixing.

with MIR adds complexity to the live coding environment. This approach twists the role

of the live coder towards taking organizational decisions from incoming audio streams

(e.g., setting volumes of the audio streams, creating mappings between audio and visual

parameters), as opposed to interacting with a single audio stream and creating sounds,

as in audio rewiring. The role of the live coder thus needs to be redefined, where the

use of an algorithmic system to help taking live decisions in the performance space can

lead to creative outcomes, as shown in the pieces Union and Flock. In the algorithmic

examples, audio mixing decisions are based on features such as loudness. As shown in

FEATUR.UX, there is room for more complex mappings using both low-level (e.g., RMS,

spectral centroid, MFCCs) and mid-level features (e.g., peak frequency, chromagram) that

are mapped to visual attributes (e.g., size, shape, color, rotation, position), which are

combined with a visualization of the real-time changes.

Xambó et al. Preprint

CROATIA
(+1)

TURKEY
(+2)

POLAND
(+1)

GREECE
(+2)

UK (UTC)

USA
(-5)

AUSTRALIA
(+10)

Music role

Mixing role

JackTrip

Locus Sonus

Figure 10. Geolocation diagram of a co-joint performance between Female Laptop Orchestra
(FLO) and Women in Music Tech (WiMT).

Prototype 3: A Case Study for Exploring Audio Remixing

This module is designed for supporting the remix of multiple audio streams using

MIR techniques in SuperCollider (online at vimeo.com/249997569). This prototype is

conceptually inspired by the network music piece Transmusicking I (see Figure 10, online

at youtu.be/AfR6UFS7Wuk), performed internationally by the Female Laptop Orchestra

(FLO) and Women in Music Tech (WiMT). The lessons learned from using the web audio

interface WACastMix (annaxambo.me/code/WACastMix) in this performance, as well as

the experience from the audio rewiring prototype, inform the design of this prototype in

terms of using feature extraction for supporting spatialization, equalization, and mixing of

the incoming audio streams.

The role of LC is less obvious in this prototype, as it focuses on managing and mixing

the incoming audio streams. The challenge is to use LC procedures, such as representing

and manipulating the audio streams using code in real time, as well as making visible

the mixing process to the audience. The use of multiple audio streams requires careful

http://vimeo.com/249997569
http://youtu.be/AfR6UFS7Wuk
http://annaxambo.me/code/WACastMix/

Xambó et al. Preprint

attention from the live coder, thus visualization aids are acknowledged (similar to the

graphical user interface (GUI) used in WACastMix). An interesting challenge is deciding

what audio streams are performing when and how. The live coder uses functions based

on feature extraction to help making egalitarian decisions (e.g., continuous vs. sporadic

audio streams, vocal vs. instrumental streams), also preventing unexpected problems,

such as audio streams not working momentarily. With respect to technical challenges, this

approach requires a high broadband Internet connection with low latency. Also, there

exists a network latency that, depending on the type of connections of the musicians

who are sending audio streams, can be between 8–9 s to more than 30 s delay. This is a

well-known issue in network music that affects music synchronicity (Chafe, Cáceres, and

Gurevich 2010). Further explorations include combining remote and co-located audio

streams, developing a GUI to support decision making, and mixing the audio streams

based on creative MIR ideas, such as the multi-song mashups from AutoMashUpper

(Davies, Hamel, Yoshii, and Goto 2014).

Discussion

As shown in the literature review and illustrative examples, MIR functionality in LC

environments remains quite limited compared to the state-of-the-art MIR systems outside

these environments. There are several possible reasons for that. First, a surprising amount

of MIR systems are not designed for real-time usage because real-time capabilities are not

typical design goals of MIR researchers. Furthermore, many state-of-the-art MIR systems

require calculations that take longer time than the length of the processed audio block,

possibly leading to sound drop-outs and high system loads if used in a real-time context.

Even if an MIR system works in real time, its latency can be too long for a given context.

Second, real-time systems are often not as reliable as offline systems. Offline systems

have access to more data for analysis and can search for globally optimal solutions or can

use iterative approaches with undefined processing time. Third, the implementation of

Xambó et al. Preprint

MIR systems is nowadays often too complex with too many dependencies to be easily

implemented as a plugin by a non-expert. Given that there is not too much overlap between

researchers in MIR and LC, this impedes the integration of advanced MIR technology.

Fourth, the focus of MIR researchers when designing systems is frequently on a relatively

narrow group of target signals, e.g., Western pop music. This makes the systems both

less usable and less appealing in the field of LC with its tendency towards experimental

music. Of course, there is information that can, per definition, be not extracted in real

time because systems require long-term context, for instance, for the description of music

structure.

In our prototypes we have explored the extensive use of mid-level features and some

workarounds to using high-level features (e.g., tag-based information). We can conclude

that the usage of MIR approaches in LC is promising, yet it is still in its infancy for reasons

of complexity and algorithm design, but also because of limited communication between

the fields. Opening a dialog could help progressing both fields.

Conclusion and Future Work

In this article, we have discussed MIR in live performance, focusing on the improvi-

sational practice of live coding. In particular, we have surveyed from the literature, and

explored with prototype making, three categories for using MIR techniques in live coding:

(1) audio repurposing, (2) audio rewiring and (3) audio remixing. This article aims at

contributing to the LC community with new approaches to using MIR in real time, as well

as appealing to the MIR community for the need of more real-time systems, at the same

time offering an artistic outlet and usage scenario for MIR technology. Next steps include

the implementation of machine learning algorithms that can automate some tasks of the

live coder and could lead to more interesting musical results that evolve over time, as well

as the evaluation of these algorithms from a musical and computational perspective. The

Xambó et al. Preprint

combination of the three categories is also of future interest.

Acknowledgments

The authors wish to thank the reviewers and editors for their insightful comments

and suggestions, which have helped to improve the manuscript. We are thankful to Gerard

Roma, Anna Weisling and Takahiko Tsuchiya for inspirational discussions. We appreciate

the help and involvement of all the collaborators who made this research possible. We

especially thank Frank Clark and Josh Smith from the School of Music at Georgia Tech

for their technical support. The work presented in this article has been partly conducted

while the first author was at Georgia Tech from 2015–2017 with the support of the School

of Music, the Center for Music Technology and Women in Music Tech at Georgia Tech.

Another part of this research has been conducted while the first author was at Queen Mary

University of London from 2017–2019 with the support of the AudioCommons project,

funded by the European Commission through the Horizon 2020 programme, research and

innovation grant 688382.

References

Aaron, S., and A. F. Blackwell. 2013. “From Sonic Pi to Overtone: Creative Musical

Experiences with Domain-specific and Functional Languages.” In Proc. of the First ACM

SIGPLAN Workshop on Functional Art, Music, Modeling & Design. pp. 35–46.

Bernardini, N., X. Serra, M. Leman, and G. Widmer, (editors) . 2007. A Roadmap for Sound

and Music Computing. The S2S2 Consortium. URL https://repositori.upf.edu/handle/

10230/34060.

Bogdanov, D., N. Wack, E. Gómez, S. Gulati, et al. 2013. “Essentia: An Audio Analysis

Library for Music Information Retrieval.” In Proc. of the International Society for Music

Information Retrieval 2013. pp. 493–498.

https://repositori.upf.edu/handle/10230/34060
https://repositori.upf.edu/handle/10230/34060

Xambó et al. Preprint

Brown, A. R. 2006. “Code Jamming.” M/C Journal 9(6). URL http://journal.media-culture.

org.au/0612/03-brown.php.

Bullock, J. 2007. “Libxtract: A Lightweight Library for Audio Feature Extraction.” In Proc.

of the International Computer Music Conference, volume 2. pp. 25–28.

Chadabe, J. 1984. “Interactive Composing: An Overview.” Computer Music Journal 8(1):22–

27.

Chafe, C., J.-P. Cáceres, and M. Gurevich. 2010. “Effect of Temporal Separation on Synchro-

nization in Rhythmic Performance.” Perception 39(7):982–992.

Collins, N. 2002. “The BBCut Library.” In Proc. of the International Computer Music Conference.

pp. 313–316.

Collins, N. 2006. “BBCut2: Integrating Beat Tracking and On-the-Fly Event Analysis.”

Journal of New Music Research 35(1):63–70.

Collins, N. 2011. “SCMIR: A SuperCollider Music Information Retrieval Library.” In Proc.

of the International Computer Music Conference. pp. 499–502.

Collins, N. 2015. “Live Coding and Machine Listening.” In Proc. of the First International

Conference on Live Coding. pp. 4–11.

Collins, N., A. McLean, J. Rohrhuber, and A. Ward. 2007. “Live Coding Techniques for

Laptop Performance.” Organised Sound 8(3):321–330.

Davies, M. E. P., P. Hamel, K. Yoshii, and M. Goto. 2014. “AutoMashUpper: Automatic

Creation of Multi-Song Music Mashups.” IEEE/ACM Transactions on Audio, Speech, and

Language Processing 22(12):1726–1737.

Essl, G. 2010. “Ursound–Live Patching Of Audio And Multimedia Using A Multi-Rate

Normed Single-Stream Data-Flow Engine.” In Proc. of the International Computer Music

Conference. pp. 534–537.

http://journal.media-culture.org.au/0612/03-brown.php
http://journal.media-culture.org.au/0612/03-brown.php

Xambó et al. Preprint

Fiebrink, R., G. Wang, and P. Cook. 2008. “Support for MIR Prototyping and Real-Time

Applications in the ChucK Programming Language.” In Proc. of the 9th International

Conference on Music Information Retrieval. pp. 153–158.

Font, F., G. Roma, and X. Serra. 2017. “Sound Sharing and Retrieval.” In T. Virtanen, M. D.

Plumbley, and D. Ellis, (editors) Computational Analysis of Sound Scenes and Events. Cham,

Switzerland: Springer International Publishing, pp. 279–301.

Freeman, J., and A. V. Troyer. 2011. “Collaborative Textual Improvisation in a Laptop

Ensemble.” Computer Music Journal 35(2):8–21.

Kirkbride, R. 2016. “FoxDot: Live Coding with Python and SuperCollider.” In Proc. of the

International Conference on Live Interfaces. pp. 193–198.

Knotts, S. 2016. “Algorithmic Interfaces for Collaborative Improvisation.” In Proc. of the

International Conference on Live Interfaces. pp. 232–237.

Latina, C. 2016. “Machine Listening Eurorack Module.” Master’s thesis, Georgia Institute

of Technology.

Lee, S. W., J. Bang, and G. Essl. 2017. “Live Coding YouTube: Organizing Streaming Media

for an Audiovisual Performance.” In Proc. of the 17th International Conference on New

Interfaces for Musical Expression. pp. 261–266.

Lee, Y. S., K. Jo, A. Weisling, A. Xambó, and L. McCarthy. 2018. “Demo Hour.” Interactions

25(5):10–13.

Lerch, A. 2012. An Introduction to Audio Content Analysis: Applications in Signal Processing

and Music Informatics. Hoboken, NJ: Wiley-IEEE Press.

Malt, M., and E. Jourdan. 2008. “Zsa. Descriptors: A Library for Real-time Descriptors

Analysis.” In Proc. of the 5th Sound and Music Computing Conference. pp. 134–137.

Xambó et al. Preprint

McCartney, J. 2002. “Rethinking the Computer Music Language: SuperCollider.” Computer

Music Journal 26(4):61–68.

McLean, A., and K. Sicchio. 2013. “Sound Choreography: Body Code.” Proc. of the Second

Conference xCoAx 2014 on Computation, Communication, Aesthetics, and X (xCoAx 2013)

:355–362.

McLean, A., and G. Wiggins. 2010. “Tidal – Pattern Language for the Live Coding of

Music.” In Proc. of the 7th Sound and Music Computing Conference. URL https://zenodo.

org/record/849841/files/smc_2010_067.pdf.

Olowe, I., M. Barthet, M. Grierson, and N. Bryan-Kinns. 2016. “FEATUR.UX: Exploiting

Multitrack Information for Artistic Visualization.” In Proc. of the International Conference

on Technologies for Music Notation and Representation. Cambridge, UK, pp. 157–166.

Ordiales, H., and M. L. Bruno. 2017. “Sound Recycling from Public Databases: Another

BigData Approach to Sound Collections.” In Proc. of the 12th International Audio Mostly

Conference on Augmented and Participatory Sound and Music Experiences. pp. 48:1–48:8.

Puckette, M. 2002. “Max at Seventeen.” Computer Music Journal 26(4):31–43.

Puckette, M. S., T. Apel, and D. D. Zicarelli. 1998. “Real-time Audio Analysis Tools for Pd

and MSP.” In Proc. of the International Computer Music Conference. pp. 109–112.

Resnick, M., J. Maloney, A. Monroy-Hernández, N. Rusk, et al. 2009. “Scratch: Program-

ming for All.” Communications of the ACM 52(11):60–67.

Roberts, C., and J. Kuchera-Morin. 2012. “Gibber: Live Coding Audio in the Browser.” In

Proc. of the International Computer Music Conference. pp. 64–69.

Roberts, C., and G. Wakefield. 2017. “gibberwocky: New Live-Coding Instruments for

Musical Performance.” In Proc. of the 17th International Conference on New Interfaces for

Musical Expression. pp. 121–126.

https://zenodo.org/record/849841/files/smc_2010_067.pdf
https://zenodo.org/record/849841/files/smc_2010_067.pdf

Xambó et al. Preprint

Roberts, C., M. Wright, J. Kuchera-Morin, and T. Höllerer. 2014. “Rapid Creation and

Publication of Digital Musical Instruments.” In Proc. of the 14th International Conference

on New Interfaces for Musical Expression. pp. 239–242.

Rohrhuber, J., A. de Campo, R. Wieser, J.-K. van Kampen, E. Ho, and H. Hölzl. 2007.

“Purloined Letters and Distributed Persons.” In Music in the Global Village Confer-

ence. URL http://iterati.net/~rohrhuber/articles/Purloined_Letters_and_Distributed_

Persons.pdf.

Roma, G., P. Herrera, and X. Serra. 2009. “Freesound Radio: Supporting Music Creation

by Exploration of a Sound Database.” In Workshop on Computational Creativity Support

(CHI2009). URL http://hdl.handle.net/10230/34579.

Roma, G., and X. Serra. 2015. “Music Performance by Discovering Community Loops.” In

Proc. of the 1st Web Audio Conference. URL http://mtg.upf.edu/node/3177.

Rowe, R. 1993. Interactive Music Systems: Machine Listening and Composing. Cambridge,

MA: MIT Press.

Rowe, R. 2001. Machine Musicianship. Cambridge, MA: MIT Press.

Sanfilippo, D., and A. Valle. 2013. “Feedback Systems: An Analytical Framework.” Com-

puter Music Journal 37(2):12–27.

Schedl, M., E. Gómez, J. Urbano, et al. 2014. “Music Information Retrieval: Recent

Developments and Applications.” Foundations and Trends® in Information Retrieval 8(2-

3):127–261.

Schnell, N., A. Röbel, D. Schwarz, G. Peeters, R. Borghesi, et al. 2009. “MuBu and

Friends–Assembling Tools for Content Based Real-time Interactive Audio Processing in

Max/MSP.” In Proc. of the International Computer Music Conference. pp. 423–426.

http://iterati.net/~rohrhuber/articles/Purloined_Letters_and_Distributed_Persons.pdf
http://iterati.net/~rohrhuber/articles/Purloined_Letters_and_Distributed_Persons.pdf
http://hdl.handle.net/10230/34579
http://mtg.upf.edu/node/3177

Xambó et al. Preprint

Schwarz, D. 2007. “Corpus-Based Concatenative Synthesis.” IEEE Signal Processing

Magazine 24(2):92–104.

Serra, X., M. Magas, E. Benetos, M. Chudy, et al. 2013. Roadmap for Music Information

ReSearch. MIRES Consortium. URL http://hdl.handle.net/10230/21766.

Sorensen, A. C. 2018. “Extempore: The Design, Implementation and Application of

a Cyber-Physical Programming Language.” Ph.D. thesis, The Australian National

University.

Stowell, D., and M. D. Plumbley. 2010. “Delayed Decision-making in Real-time Beatbox

Percussion Classification.” Journal of New Music Research 39(3):203–213.

Tsuchiya, T., J. Freeman, and L. W. Lerner. 2016. “Data-Driven Live Coding with

DataToMusic API.” In Proc. of the Web Audio Conference. Atlanta, GA. URL https:

//smartech.gatech.edu/handle/1853/54590.

Wang, G. 2008. “The ChucK Audio Programming Language: A Strongly-timed and

On-the-Fly Environ/mentality.” Phd thesis, Princeton University.

Wang, G., R. Fiebrink, and P. R. Cook. 2007. “Combining Analysis and Synthesis in the

ChucK Programming Language.” In Proc. of the International Computer Music Conference.

pp. 35–42.

Weinberg, G. 2005. “Interconnected Musical Networks: Toward a Theoretical Framework.”

Computer Music Journal 29(2):23–39.

Weisling, A. 2017. “The Distaff: A Physical Interface to Facilitate Interdisciplinary Collabo-

rative Performance.” In Proc. of the 2017 Conference on Designing Interactive Systems. New

York, NY, USA, pp. 1365–1368.

Weisling, A., and A. Xambó. 2018. “Beacon: Exploring Physicality in Digital Performance.”

http://hdl.handle.net/10230/21766
https://smartech.gatech.edu/handle/1853/54590
https://smartech.gatech.edu/handle/1853/54590

Xambó et al. Preprint

In Proc. of the 12th International Conference on Tangible, Embedded, and Embodied Interaction.

pp. 586–591.

Weisling, A., A. Xambó, I. Olowe, and M. Barthet. 2018. “Surveying the Compositional

and Performance Practices of Audiovisual Practitioners.” In Proc. of the 18th International

Conference on New Interfaces for Musical Expression. pp. 344–345.

Xambó, A. 2015. “Tabletop Tangible Interfaces for Music Performance: Design and Evalua-

tion.” Ph.D. thesis, The Open University.

Xambó, A., A. Lerch, and J. Freeman. 2016. “Learning to Code through MIR.” In Extended

Abstracts for the Late-Breaking Demo Session of the 17th International Society for Music

Information Retrieval Conference. URL https://s18798.pcdn.co/ismir2016/wp-content/

uploads/sites/2294/2016/08/xambo-learning.pdf.

Xambó, A., G. Roma, A. Lerch, M. Barthet, and G. Fazekas. 2018. “Live Repurposing of

Sounds: MIR Explorations with Personal and Crowdsourced Databases.” In Proc. of the

18th International Conference on New Interfaces for Musical Expression. pp. 364–369.

Zils, A., and F. Pachet. 2001. “Musical Mosaicing.” In Proc. of the COST G-6 Conference on

Digital Audio Effects, volume 2. pp. 39–44.

https://s18798.pcdn.co/ismir2016/wp-content/uploads/sites/2294/2016/08/xambo-learning.pdf
https://s18798.pcdn.co/ismir2016/wp-content/uploads/sites/2294/2016/08/xambo-learning.pdf

	Introduction
	Background
	Live Coding Programming Languages
	MIR in Commercial Software for Live Performance

	Real-Time Feature Extraction Tools for LC Environments
	Conceptual Framework on MIR in Live Coding
	Audio Repurposing
	Examples of Audio Repurposing
	Prototype 1: A Case Study for Exploring Audio Repurposing

	Audio Rewiring
	Examples of Audio Rewiring
	Prototype 2: A Case Study for Exploring Audio Rewiring

	Audio Remixing
	Examples of Audio Remixing
	Prototype 3: A Case Study for Exploring Audio Remixing

	Discussion
	Conclusion and Future Work
	Acknowledgments

