
Anna Xambó

anna.xambo@dmu.ac.uk

Music, Technology and Innovation - Institute for Sonic Creativity (MTI^2)

De Montfort University

Women Who Code, School of Media Arts, Columbia College Chicago

25.09.2020

Tone.js
Codepen.io
Dropbox

Inspired by common tools used in gaming and music production, the Web Audio API is a cross-browser
solution that allows for the development of sophisticated audio applications in JavaScript that can be freely
accessible from anywhere in the world. Several libraries and frameworks are built upon this API, which
facilitates prototyping music and audio ideas quickly. In this hands-on workshop, we will explore Tone.js, a
web audio framework that facilitates the creation of interactive music for the web. The workshop is designed
to accommodate both beginners and experts in programming using a team-based learning approach with
collaborative online tools.

I hear and I forget.

I see and I remember.

Creative Audio Programming for the Web with
Tone.js

Links

Abstract

mailto:anna.xambo@dmu.ac.uk
https://tonejs.github.io/
https://codepen.io/axambo/
https://www.dropbox.com/sh/0x3uk81eba41kex/AACpe-Mg4PIC6T0s-tRoIFI5a?dl=0

I do and I understand.

Chinese Proverb.

10' Introductions
People
Learning outcomes
How are we going to operate?

30' Sound synthesis
HTML - CSS - JavaScript
Web Audio overview
Tone.js overview
Understanding what is possible:

Example 1: Tone.js Demos
Example 2: Partipatory Mobile Pieces
Example 3: Tone Toss by Cameron Lee (Audio Arts and Acoustics, Columbia College
Chicago)

Understanding the framework: Online examples from Tone.js website explored on CodePen /
JSFiddle
Same examples on VS Code (local environment).

Running the local server
Workflow VS Code / Browser Dev Tools / API

30' Interactivity
Examples

Envelope
Arpeggiator
Transport
BPM

Team task

30' Musical prototype building
Team task

10' Publishing, Resources, FAQ
10' Questionnaire & Closing

Questionnaire

Schedule

http://tiny.cc/WWC-workshop

Final words (JAES SI WA, WAC 2021 Conference)

Who are you?
What do you do? (e.g. student, faculty, independent...).
Three topics of your interest.

Get familiar with the framework Tone.js.
Develop programming skills using collaborative techniques.
Be able to take ownership of code related to interactive music.
Get an understanding about how to develop online musical prototypes.
Get interest in the web audio and computer music communities.

A hands-on approach: everyone should have access to the materials and interact with them.
A collaborative approach: mixed groups for two blocks of the workshop using collaborative
technologies (sharing screen in Zoom, creation of teams in Zoom, use of VS Code Live Share.
Folder with the files and documentation: https://www.dropbox.com/sh/0x3uk81eba41kex/AACpe-
Mg4PIC6T0s-tRoIFI5a?dl=0

Introductions

Learning Outcomes

How Are We Going To Operate?

Part 1: Sound synthesis

HTML - CSS - JavaScript

https://www.dropbox.com/sh/0x3uk81eba41kex/AACpe-Mg4PIC6T0s-tRoIFI5a?dl=0

The Web Audio API provides a powerful and versatile system for controlling audio on the Web,
allowing developers to choose audio sources, add effects to audio, create audio visualizations, apply
spatial effects (such as panning) and much more.

Web Audio overview

Web Audio - Pros and Cons

https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API

Source: Xambó et al. (2019)

A web audio framework for creating interactive music in the browser.
A framework is more constrained than a library because it gives functionality that needs to follow a
particular structure.
The framework is characterised by:

Musicality: musical scores are possible with JSON files.
Modularity: elements can be connected e.g. DSP and synthesis building blocks.
Synchronization: elements or building blocks can share the same timeline / clock.

Source: Mann (2015)

With Tone.Time , AudioContext time can be expressed in tempo-relative terms that are translated into
seconds with the toSeconds method. Delay times, for example, can be expressed in terms of beats:
"4n" would translate to 0.5 seconds at 120 bpm (4/4 time signature).

The notation style is inspired by Max/MSP's metrical timing and Ableton Live's transport time
representation.

It is often useful to schedules values relative to the current AudioContext time from Web Audio. Prefixing

Tone.js overview

Tone.js overview: Musical time

any of the above representations with a plus sign as a string ("+") will add the AudioContext’s currentTime
to the following value.

Source: Mann (2015)

The browser’s provides two built-in methods to deal with time: setTimeout() and
setInterval() . They use the same thread as the rest of the DOM.

Challenge! JavaScript is asynchronous. Events cued to be executed as soon as possible, thus time
precision is difficult.
Solution: Using the internal clock of Web Audio. The web audio clock operates on a separate thread
than the rest of the DOM: audioContext.currentTime

The currentTime read-only property of the BaseAudioContext interface returns a double representing
an ever-increasing hardware timestamp in seconds that can be used for scheduling audio playback,
visualizing timelines, etc. It starts at 0. More info here.
The Web Audio API includes a collection of methods for scheduling changes in audio parameter
values at present or in the future:

setValueAtTime(arg1,arg2)

exponentialRampToValueAtTime(arg1,arg2)

linearRampToValueAtTime(arg1,arg2)

setTargetAtTime(arg1,arg2,arg3)

setValueCurveAtTime(arg1,arg2,arg3)

A single transport is central to many music production environments since it allows for tightly synchronized
and coordinated events.

Tone.Transport schedules callback functions: it has a setInterval method that accepts a
callback and an interval (in Tone.Time).

 Transport.setInterval(function(time){
 //check application state
 //trigger an event using ’time’
 }, "8n"); // invoked every 8th note

Tone.Transport ’s API also includes a setTimeout method for scheduling single events in the
future relative to the current clock time, and a setTimeline method which schedules methods along a
loop-able and seek-able global timeline.

Timing Web Audio Events

Tone.js overview: Transport

https://developer.mozilla.org/en-US/docs/Web/API/BaseAudioContext/currentTime

Source: Mann (2015)

In addition to making it easy to share a single reverb effect across many audio nodes, buses also promote
loose-coupling between audio modules.

 synth.send("reverb", 0.5);
 //...in a separate audio module
 reverbEffect.receive("reverb");

It can be useful to conditionally route audio to or from another AudioNode; Tone.Route and Tone.Select do
just that. Tone.Route has any number of inputs and only one output. By setting its gate to an input
number, Tone.Route selectively routes that input to the output, stopping all others. Tone.Select routes
a single input to one of the outputs depending on the value of the Select’s gate.

The master output is an abstraction on the native AudioDestinationNode . With this abstraction, it
makes adjusting the global volume or muting the entire application easier. Also, by placing a node before
the final output, global e↵ects, compressors, and limiters can be applied to the entire mix.

Source: Mann (2015)

The gain node can be used to split and combine input sources.
Gain nodes facilitate independent volume control of the audio sources.
Gain nodes are used as virtual mixing channels.
A wrapper around the Native Web Audio GainNode exists: Tone.Gain.

Tone.js overview: Buses, routing and master
output

Buses

Routing

Master output

Gain node in web audio

https://tonejs.github.io/docs/r13/Gain

Tone.js includes sound sources such as oscillators of different types (basic oscillator, FMOscillator,
AMOscillator, GrainPlayer, LFO, noise, and so on) as well as an audio or multiple file players (Player,
Players).

1. Invoke the method to create the node e.g. AudioContext.createGain().
2. Connect the object (sound source, effect) in the signal chain.
3. Modify the properties and methods of the effects node.

! Web Audio, ex: oscillator
context = new AudioContext();
oscillator = context.createOscillator();
oscillator.connect(context.destination);
oscillator.frequency.value = 440;
oscillator.type = "sine"; // "triangle", "square", "sawtooth", "triangle"
oscillator.start();

Tone.js overview: Sound sources

How can a sound source be incorporated?

In Web Audio:

In Tone.js:

https://tonejs.github.io/docs/14.7.39/Oscillator
https://tonejs.github.io/docs/14.7.39/FMOscillator
https://tonejs.github.io/docs/14.7.39/AMOscillator
https://tonejs.github.io/docs/14.7.39/GrainPlayer
https://tonejs.github.io/docs/14.7.39/LFO
https://tonejs.github.io/docs/14.7.39/Noise
https://tonejs.github.io/docs/14.7.39/Player
https://tonejs.github.io/docs/14.7.39/Players

1. Connect the object (sound source) in the signal chain.
2. Modify the properties and methods of the sound source node.

! Tone.js, ex: oscillator
// make and start a 440hz sine tone
const osc = new Tone.Oscillator(440, "sine").toDestination().start();

Tone.js includes instruments such as an FM (Frequency Modulation) synthesizer and a Karplus-Strong
plucked string modeling synthesizer.
Tone.js has a number of audio effects including Tone.PingPongDelay, Tone.Freeverb, and
Tone.BitCrusher.

1. Invoke the method to create the node e.g. AudioContext.createGain().
2. Connect the object (sound source, effect) in the signal chain.
3. Modify the properties and methods of the effects node.

! Web Audio, ex: StereoPannerNode
var source = audioCtx.createMediaElementSource(myAudio);
var panNode = audioCtx.createStereoPanner();
source.connect(panNode);
panNode.connect(audioCtx.destination);

1. Connect the object (sound source, effect) in the signal chain.
2. Modify the properties and methods of the effects node.

Tone.js overview: Instruments and effects

How can the effects be incorporated?

In Web Audio:

In Tone.js:

https://tonejs.github.io/docs/14.7.39/FMSynth
https://tonejs.github.io/docs/14.7.39/PluckSynth
https://tonejs.github.io/docs/14.7.39/PingPongDelay
https://tonejs.github.io/docs/14.7.39/Freeverb

! Tone.js, ex: Freeverb
var freeverb = new Tone.Freeverb().toDestination();
freeverb.dampening = 1000;
// routing synth through the reverb
var synth = new Tone.NoiseSynth().connect(freeverb);
synth.triggerAttackRelease(0.05);

The states of instruments and effects in Tone.js can be set through JSON (JavaScript Object Notation)
descriptions in the constructor and set method.

 var fastPanner = new Tone.AutoPanner({
 "frequency" : "16n",
 "type" : "square"
 });

This format makes it simple to create and share presets.

The JSON descriptions in Tone.js are inspired by the unit generator/score file distinction introduced in
MUSIC by Max Mathews which has been a feature in many subsequent computer music languages.

Source: Mann (2015)

An example “orchestra” (to use Csound terminology) with Tone.js might be a Tone.PluckSynth connected
through a Tone.Chorus to the master output. The score part would look like:

 pluckSynth.set({
 "attackNoise" : 0.8,
 "resonance" : 0.6
 });

 chorus.set({
 "rate" : 0.75,
 "delayTime" : 3.5,
 "depth" : 0.7,
 });

Source: Mann (2015)

Presets, States and Scores in JSON

Example: Defining the instruments

http://en.wikipedia.org/wiki/MUSIC-N

Scores are another JSON-based description used in Tone.js. A score can be parsed by
Tone.Note.parse which schedules note events along the transport’s timeline.

Scores are represented in JSON with the name of the instrument or channel as the object’s key and an
array of events as the value. Instruments and other components can then listen for these events using
Tone.Note.route . Tone.Note.route is invoked with a score’s keys and an event callback

function.

 var score = {
 "drums" : [["0:0","kick"],["0:1","snare"],...
 };
 Tone.Note.parse(score);
 Tone.Note.route("drums",function(time,sample){
 //play drum sample at time
 });

Source: Mann (2015)

Example 1: Tone.js Demos
Example 2: Partipatory Mobile Pieces
Example 3: Tone Toss by Cameron Lee (Audio Arts and Acoustics, Columbia College Chicago)

Examples from Tone.js website: https://tonejs.github.io
Online HTML-CSS-JavaScript editor:

Codepen.io or JSFiddle.net

Code in the HTML window:

!html
<script src="https://unpkg.com/tone@latest"></script>
<button type="button" id="button1">Start</button>
<button type="button" id="button2">Stop</button>

Code in the JavaScript window:

Example: A score

Understanding what is possible

Hands-on I: Procedure to Follow the Examples

https://tonejs.github.io/demos
http://tiny.cc/performing-audiences
https://youtu.be/9CywSb3dn-k
https://tonejs.github.io/
https://codepen.io/pen/
https://jsfiddle.net/

!javascript
// COPY INSTANTIATION CODE HERE
document.querySelector("#button1").addEventListener('click', function() {

 // COPY THE CODE RELATED TO THE PLAY BUTTON BEHAVIOR HERE
 // console.log("play");
 });
document.querySelector("#button2").addEventListener('click', function() {

 // COPY THE CODE RELATED TO THE STOP BUTTON BEHAVIOR HERE
 console.log("stop");
 });

Responsive Design Principles
Responsive Design Frameworks:

W3.CSS responsive stylesheet
Bootstrap uses HTML, CSS and jQuery to make responsive web pages.

Touch events are supported by Chrome and Firefox on desktop, and by Safari on iOS and Chrome and
the Android browser on Android, as well as other mobile browsers like the Blackberry browser.
There are three basic touch events:

touchstart (a finger is placed on a DOM element),
touchmove (a finger is dragged along a DOM element) and
touchend (a finger is removed from a DOM element). — Your applications should support both
touch and mouse.

Hands-on II: Interactivity

Hands-on III: Musical prototype building

Publishing, Resources, FAQ

Publishing

Responsive Design

Touch Events

https://www.w3schools.com/html/html_responsive.asp
https://www.w3schools.com/w3css/
https://getbootstrap.com/

More info here.

Note: Also check the references below.

Smus, Boris. (2013). Web Audio API: Advanced Sound for Games and Interactive Apps. O'Reilly
Media, Inc.

Online access
Buy on Amazon

Web Audio API:
https://www.w3.org/2011/audio
https://developer.mozilla.org/en-US/docs/Web/API/WebAudioAPI

W3C Audio Working Group

Web Audio Weekly

The Future of Web Audio: with Chris Wilson and Chris Lowis
Introducing the Web Audio API
Web Audio Conference Channel

amilajack/awesome-web-audio: A list of resources and projects to help learn about audio.
jonahvsweb/awesome-web-audio-resources: A repository of helpful Web Audio related links and other
online resources/inspiration.

Frequently Asked Questions

Resources

Books

API

Groups

Newsletters

Videos

Awesome Web Audio

FAQ

https://www.html5rocks.com/en/mobile/touchandmouse/
https://webaudioapi.com/book/Web_Audio_API_Boris_Smus.pdf
https://www.oreilly.com/library/view/web-audio-api/9781449332679
https://www.w3.org/2011/audio
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://www.w3.org/2011/audio/
https://www.webaudioweekly.com/
https://youtu.be/vKGKJprJhkc
https://youtu.be/_ZUhicr-R-g
https://www.youtube.com/channel/UCMaHc1Rq2viM88OsluS2WWw/videos
https://github.com/amilajack/awesome-web-audio
https://github.com/jonahvsweb/awesome-web-audio-resources
file:///Users/annaxambo/Documents/__Workshops__/Web%20Audio%20with%20Tone.js/Material%20for%20Workshop/*WORKSHOP/info/FAQs.md

Mann, Y. (2015) Interactive Music with Tone.js. In Proceedings of the Web Audio Conference 2015.
Paris, France.
Smus, B. (2013) Web Audio API: Advanced Sound for Games and Interactive Apps. 1st edition.
O’Reilly Media, Inc., Sebastopol, CA.
Xambó, A., Martín, S. R., Roma, G. (eds.) (2020). JAES Special Issue in Web Audio. Journal of Audio
Engineering Society, volume 68, issue 10.
Xambó, A., Støckert, R., Jensenius, A.R. and Saue, S. (2019) “Facilitating Team-Based Programming
Learning with Web Audio”. In Proceedings of the Web Audio Conference 2019. Trondheim, Norway.
pp. 2–7.

References

