
USING EARSKETCH TO BROADEN
PARTICIPATION IN COMPUTING AND MUSIC

Jason Freeman Brian Magerko Doug Edwards

Georgia Institute of Technology
jason.freeman@gatech.edu

Morgan Miller
SageFox Consulting

mmiller@sagefoxgroup.com

Georgia Institute of Technology
magerko@gatech.edu

Roxanne Moore
Georgia Institute of Technology

roxanne.moore@ceismc.gatech.edu

Georgia Institute of Technology
doug.edwards@ceismc.ga

tech.edu

Anna Xambó
Georgia Institute of Technology
anna.xambo@coa.gatech.edu

ABSTRACT

EarSketch is a STEAM learning intervention that com-
bines a programming environment and API for Python
and JavaScript, a digital audio workstation, an audio loop
library, and a standards-aligned curriculum to teach in-
troductory computer science together with music tech-
nology and composition. It seeks to address the imbal-
ance in contemporary society between participation in
music-making and music-listening activities and a paral-
lel imbalance between computer usage and computer
programming. It also seeks to engage a diverse popula-
tion of students in an effort to address long-standing is-
sues with underrepresentation — particularly of women
— in both computing and music composition. This paper
summarizes the design of the EarSketch curriculum and
learning environment and its deployment contexts to date,
along with key findings from a pilot study. It builds upon
prior publications by contextualizing the project’s moti-
vations and interpreting its findings in the dual realms of
participation in computer science and in music creation.

1. INTRODUCTION
Music has increasingly become a commodity to be heard
rather than a creative experience in which to partake. Re-
cent data from the National Endowment for the Arts in
the United States (Figure 1) shows that only a small per-
centage of American adults engage in music-making ac-
tivities even once per year, while a far greater percentage
listen to recorded or live music [1].

In the field of computing, a similar divide is evident be-
tween using computers or smartphones and programming
those same devices (Figure 2). Change the Equation ex-
presses this divide succinctly in arguing that “digital na-
tive does not mean tech savvy: 83% of millennials say
they sleep with their smartphones, yet 58% of millennials
have poor skills in solving problems with technology”
[2]. This relative lack of computational skills is more than
an economic problem, with a growing demand for com-

puting jobs in the workforce [3]. Just as music has long
been a core mechanism for human expression and collab-
oration [4], computing is becoming a core 21st century
skill: understanding the algorithms behind computers and
how to write code is essential to understanding the bene-
fits, grappling with the limitations, and harnessing the
creative potential of new computing technologies [5].
Creating Music
Played a musical instrument, alone or with others 12%
Sang, either alone or with others 9%
Created or performed music 5%
Recorded, edited, remixed musical performances 4%
E-mailed, posted, or shared one’s own music 3%
Used a computer, a handheld or mobile device, or
the Internet to create music

1%

Consuming Music
Used TV, radio, or the Internet to access music of
any kind

57%

Used a handheld or mobile device to access music
of any kind

34%

Attended a live music performance of any kind 32%

Figure 1. Data from the US National Endowment for
the Arts on the percent of American adults (18 years
and older) who have engaged in various music activi-
ties at least once over a 12-month period [1].

In the academy, computing and music have an addition-
al commonality: both fields struggle with gender imbal-
ance. Computer science has well-documented challenges
with underrepresentation of women at all stages of the
pipeline [6], with the problem generally worsening in
recent decades even as other disciplines have improved
[7]. Music theory and composition is one of the few aca-
demic disciplines in which an even smaller percentage of
PhDs are earned by women than in computer science [8].
Coding
“do programming” at work [9] 15%
K-12 schools offering CS courses with program-
ming in the US [10]

25%

Students who are very likely to learn [more] com-
puter science in the future [10]

27%

Using Computers
Owns a desktop of laptop computer [11] 73%
Owns a smartphone of some kind [11] 68%
Uses at least one social networking site [12] 65%

Figure 2. Data on computer usage and coding.

Copyright: © 2016 Jason Freeman et al. This is an open-access article
dis- tributed under the terms of the Creative Commons Attribution Li-
cense 3.0 Unported, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are
credited.

It is in this context that we developed EarSketch (Figure
3), an integrated STEAM [13] programming environ-
ment, digital audio workstation, loop library, and curricu-
lum that teaches elements of computing and music to-
gether in order to engage a diverse population of teenage
students in both domains. EarSketch seeks to address the
divides between music consumption and creation and
between computer usage and computer programming in a
manner that engages populations traditionally un-
derrepresented in these fields.

This paper contextualizes EarSketch in related work,
outlines core design principles of the project, describes
the learning environment and its components in detail,
summarizes the educational contexts in which it has been
used, reviews results from pilot studies in schools, and
outlines areas of current and future work for the project.

2. RELATED ENVIRONMENTS
EarSketch is inspired by numerous learning environments
that have combined computing and music to facilitate
learning in both domains through an algorithmic ap-
proach. For example, MediaComp [14] teaches introduc-
tory Python programming in part by teaching students
how to implement simple audio effects. Sonic Pi [15]
focuses on live coding on an embedded computing device
for both sound synthesis and symbolic music generation.
Performamatics [16] brings together computer science
and music students to create interactive musical instru-
ments through visual programming paradigms. And
JythonMusic [17] focuses on the algorithmic generation
of symbolic scores and on real-time communication with
other software and devices.

In addition to these and other specialized programming
environments and curricula, many popular computer mu-
sic languages, such as Max [18], ChucK [19], SuperCol-
lider [20], and Faust [21], are used pervasively in music

technology pedagogy in university courses. And many
programming environments designed specifically for
computing education, such as Scratch [22] and Pencil-
Code [23], include functionality for recording and play-
ing back sound and for generating MIDI note data.

EarSketch is distinct from these other environments in
three significant ways. First, EarSketch relies neither on a
knowledge of symbolic music representation (e.g. MIDI
note numbers or note names as in [16], [17], [18], [22],
and [23]) nor on a knowledge of audio synthesis or signal
processing techniques (e.g. unit generators or sample-
level manipulation as in [14], [15], [18], [19], [20], and
[21]).

Second, EarSketch exists primarily within the paradigm
(and interface of) a digital audio workstation. Unlike Max
for Live [24], the integration is not primarily through
effects and plugins but rather through programmatic op-
erations on the multi-track DAW timeline itself. In this
way, EarSketch is closest in lineage to the ReaScript Py-
thon API found within the Reaper DAW [25]. (In fact,
early versions of EarSketch were implemented within
Reaper using ReaScript.)

Third, EarSketch focuses on enabling users to quickly
create complete songs with short scripts and limited (but
developing) musical and computational skills. This low
barrier of entry, combined with simple design patterns to
quickly create hierarchical musical structures, is meant to
drive immediate engagement with music and coding for
our young, novice, and diverse target audience.

3. CORE DESIGN PRINCIPLES
To further explore these distinct features of EarSketch,

we now discuss five guiding design principles: creative
and personal expression; real-world connections; accessi-
bility to beginners; music-driven computational learning;
and standards-based curriculum.

Figure 3. The EarSketch web-based learning environment.

3.1 Creative and Personal Expression

Historically, introductory computer science has been
taught as a series of abstract problems to be solved.
Common student assignments ask students to sort words
in a list or print out a number sequence [26].

Music, as taught to teenagers in band and orchestra
classes, often focuses on rote reproduction of notated
rhythms and pitches, with minimal emphasis on student
creativity and expression [27]. New technologies such as
SmartMusic [28] further emphasize this focus by grading
students solely on how well they reproduce the notated
elements of music.

EarSketch, in contrast, emphasizes open-ended assign-
ments with no “correct” answers. Students compose mu-
sic algorithmically by writing code. Their work must
abide by a set of broad musical and computational con-
straints (e.g. to use a loop, or to incorporate at least three
tracks), but students exercise wide artistic freedom and
write in a wide variety of musical styles. We hope that
students create music that meaningfully represents them,
that they like, and that they wish to share. This approach
is inspired by constructionism [29] and by studio-based
learning as found in art and architecture courses [30].

3.2 Real-World Connections

To help drive student motivation, we wanted EarSketch
to feel relevant to the computing and music industries.

 In computing, EarSketch teaches students popular real-
world programming languages. (They choose between
Python or JavaScript.) This also enables students to trans-
fer coding skills directly to other domains and contexts.

In music, EarSketch adopts the paradigm of a digital
audio workstation (DAW). The user interface mimics the
look and feel of popular DAWs with multi-track audio
and effects lanes. The application programming interface
(API) for JavaScript and Python mirrors this functionali-
ty, with core API functions to support placement of audio
on the multi-track timeline, step-sequencing, and control
over effects parameters and automations. The audio loop
library itself provides an additional real-world connec-
tion, as the loops were created by music industry veter-
ans: Richard Devine, an experimental electronic musician
and commercial sound designer; and Young Guru, an
audio engineer best known for his work with Jay-Z.

This focus on real-world connections is inspired by the
notion of thick authenticity [31]. The authenticity of a
learning experience, according to [32], is based on the
interrelated authentic learning practices of: a) having per-
sonally meaningful learning experiences; b) learning that
relates to the world outside of the learning context; c)
learning that encourages thinking within a particular dis-
cipline (e.g. music composition); and d) allowing for as-
sessment that reflects the learning process. Thick authen-
ticity, according to [31], meets all of these requirements
in a single approach / system.

3.3 Accessibility to Beginners

EarSketch was intended for widespread use amongst stu-
dent and teacher populations with limited (if any) prior

experience in computing or music. We therefore designed
the learning environment to require no prerequisite skills
in either domain.

In the computational domain, we focused our curricu-
lum on beginning programming concepts, such as varia-
bles, functions, loops, conditionals, and lists.

In the musical domain, we teach basics of musical time
and form (tempo, rhythm, measures, structures such as
ABA and verse-chorus, etc.), avoid references to pitch
and chord names and music notation, and structure the
audio loop library as a collection of sound packs that are
designed to naturally fit well together, and focus more on
the hierarchical level of audio loops than on individual
musical events.

3.4 Music-Driven Computational Learning

EarSketch’s grounding in digital audio workstations in-
vites comparison to commercial music production soft-
ware. There is a risk that students may be unmotivated to
learn new computational concepts or to write code if they
can easily achieve similar results in a traditional DAW.

We addressed this challenge by always introducing new
computational concepts in service of musical ends, show-
ing how code can sometimes create music more quickly
and easily than a graphical interface, how it can enable
musicians to rapidly experiment with many different mu-
sical alternatives, and how it can enable the use of musi-
cal techniques that would be impossible to achieve in a
traditional DAW.

 One example of this approach is the use of strings to
create and vary drum beats. We introduce a string nota-
tion for step-sequencing, inspired by ixi.lang [34] and
LOLC [35], in which each character represents a six-
teenth-note sound hit, tie, or rest. Once these strings are
created, they can be modified with string operations to be
repeated, concatenated, split, shuffled, and otherwise
modified. This introduces students to the notion of music
as a balance between repetition and variation while
providing them with the specific technique of string crea-
tion and manipulation to actualize this concept in music.

3.5 Standards-Based Curriculum

To facilitate widespread adoption of EarSketch in learn-
ing contexts aimed at our target age demographic, we
focused on high-school computer science classrooms and
on a new curriculum standard in the United States: Com-
puter Science Principles [33].

Our curriculum, and by extension core features of the
EarSketch API and learning environment, were therefore
designed specifically to address the learning objectives in
the Computer Science Principles framework. For exam-
ple, EarSketch focuses primarily on imperative pro-
gramming paradigms and on constructs for iteration, ab-
straction, and branching that fit within such paradigms,
while avoiding object-oriented structures or functional
approaches that, while used widely in music technology
(e.g. [20]), are not emphasized in the Computer Science
Principles framework.

4. THE LEARNING ENVIRONMENT
EarSketch is a free, web-based environment that inte-
grates multiple components within a single browser win-
dow [36]. In this section, we describe its main compo-
nents: the programming environment, the digital audio
workstation (DAW), the loop library, and the curriculum.

4.1 Programming Environment

In the EarSketch code editor, students write code in Py-
thon or JavaScript, using either a text editor or a blocks-
based visual code editor [37]. Regardless of language or
editor chosen, they use the same application program-
ming interface (API) to create music.

Figure 4 shows a simple EarSketch program. fitMe-
dia() places an audio clip on a particular track and start-
ing/ending times, looping or truncating the clip as neces-
sary to fill the specified amount of time. makeBeat()
step-sequences a rhythm, with each character of a string
representing a sixteenth-note: a “0” plays a sound file
from the beginning, another digit plays alternate sound
files at other indices within a list, a “+” ties (or continues
playing) the sound file, and a “-“ makes a rest (silence).
setEffect() adds an effect to a track (or the master
track), with optional parameters to specify effect parame-

ters and to define an envelope for those parameters.
Figure 5 shows a more complex example that mimics

the practice of hocketing to create a hybrid drum track
out of two audio sources. For each sixteenth note in the
timeline, the RMS amplitude of each track is computed.
The louder track’s level is then set to 0 dB for that six-
teenth note, and the quieter track’s level is set to -60 dB.

Additional API methods offer alternate methodologies
to audio file placement and implement utility functions
such as console and file input and string manipulation.

By default, EarSketch operates in a batch mode. Code is
interpreted when hitting the “run” button to create the
music. It does not run interactively while the music is
playing. This approach follows a music production meth-
odology which is focused more on creating a fixed-media
track than on live performance. EarSketch does support
live coding [38]. Users can write and execute code while

audio is playing, and audio playback will update seam-
lessly.

4.2 Digital Audio Workstation

The digital audio workstation panel within EarSketch
displays the visual output of code execution in a standard
multi-track format. It is not a fully-functional DAW in
that students cannot add, edit, or delete audio clips or

effects; this must be done through coding. Students can
navigate their project by using transport controls, solo-
ing/muting tracks, and bypassing effects. They can also
export their project as a stereo mixdown (WAV, MP3, or
Soundcloud) or a multi-track project to continue editing
in a traditional desktop DAW.

4.3 Loop Library

EarSketch includes ~4000 loops accessible via a sound
browser sidebar. The sound browser pane mimics the
functionality of similar interface panels in DAWs, allow-
ing users to search and filter sounds by artist, genre, and
instrument. Sounds are grouped into collections that con-
tain loops designed to fit well together. Users may also
upload their own sounds from their computer or quick-
record new sounds directly within EarSketch.

from earsketch import *

init()
setTempo(120)

fitMedia(HOUSE_ROADS_PIANO_007, 1, 1, 3)
setEffect(1, VOLUME, GAIN, -60, 1, 0, 3)

beatElement = OS_LOWTOM01
beatString = "0+++0+++0+0+0+0+"
for index in range(1,3):
 makeBeat(beatElement,2,index,beatString)

finish()

Figure 4. A sample EarSketch Python script that places
an audio clip on track 1, adds a volume effect automation
to track 1, and places a step-sequenced beat on track 2.

from earsketch import *
init()
setTempo(120)

sound1 = ELECTRO_DRUM_MAIN_BEAT_001
sound2 = ELECTRO_DRUM_MAIN_BEAT_002
analysisMethod = RMS_AMPLITUDE
hop = 0.0625 # analyze 1/16th note chunks
start = 1
end = 3.0

fitMedia(sound1, 1, start, end)
fitMedia(sound2, 2, start, end)

position = 1
while (position < end):
 feature1 = analyzeTrackForTime(1,
 analysisMethod, position,
 position + hop)
 feature2 = analyzeTrackForTime(2,
 analysisMethod, position,
 position + hop)
 if (feature1 > feature2):
 setEffect(1, VOLUME, GAIN, 0,
 position, 0, position + hop)
 setEffect(2, VOLUME, GAIN, -60,
 position, -60, position + hop)
 else:
 setEffect(1, VOLUME, GAIN, -60,
 position, -60, position + hop)
 setEffect(2, VOLUME, GAIN, 0,
 position, 0, position + hop)
 position = position + hop

finish()

Figure 5. An algorithmic EarSketch example in
which two tracks’ mute states are toggled every six-
teenth note depending on which has the higher ampli-
tude.

Each sound in the library is identified by a unique con-
stant. To use the sounds within EarSketch, users simply
paste the constants into the code editor as function argu-
ments. EarSketch automatically time-stretches loops to
match the overall project tempo.

4.4 Curriculum

The EarSketch curriculum is intended to be used within
introductory computing and music technology courses,
and is specifically aligned to AP Computer Science Prin-
ciples [33], an emerging curriculum standard in the Unit-
ed States for computer science courses at the high school
(teenage) level. The EarSketch curriculum covers compu-
tational topics such as data types, variables, functions,
lists, loops, boolean logic, conditionals, and strings, and
music and music technology concepts such as DAW ba-
sics, musical form, rhythm, meter, tempo, and texture.

A sidebar within EarSketch displays textbook-like ma-
terials for students to use for self-study and as a refer-
ence: this includes text, runnable code examples, video
demonstrations, and slides. Classroom instructors can
access teaching materials that include day-by-day lesson
plans, handouts, and projects and assessments.

Each summer since 2014, the EarSketch team has con-
ducted professional learning workshops for teachers in-
terested in adopting EarSketch. These workshops teach
EarSketch and the music and computing fundamentals
teachers need for the course, as well as pedagogical tech-
niques on topics such as facilitating student collaboration,
discussing student projects, and assisting students in de-
bugging code.

5. DEPLOYMENT CONTEXTS
EarSketch has been used in a variety of educational con-
texts, including academic courses in computing and in
music technology at high schools; summer camps for
middle school and high school students; undergraduate-
level introductory computing courses; and a Massive
Open Online Course (MOOC) in music technology
taught by one of the authors (Freeman) on Coursera [39].

Since we launched the web based version of EarSketch
in 2014, over 55,000 unique users from over 100 coun-
tries have coded with EarSketch, saving over 47,000 pro-
jects to our server.

6. PILOT RESULTS
Between 2013 and 2015, we have conducted multiple
pilot studies of EarSketch in academic computing courses
at four different Atlanta-area high schools. To study the
impact of EarSketch on students in these courses, we em-
ployed a variety of research methods, including question-
naires, content assessments, observations, interviews, and
focus groups. The content knowledge assessment, given
before and after the EarSketch module of the course, was
a multiple-choice assessment aligned to the learning ob-
jectives of the courses.

A student engagement survey, administered retrospec-
tively, monitored potential changes in students’ internal
characteristics. This instrument draws scales from Wil-
liams, Weibe, Yang, & Miller [40] and Knezek & Chris-
tensen [41] measuring computing confidence, computing
enjoyment, computing importance and perceived useful-
ness, motivation to succeed, and computing identity and

Figure 6. Pre and post engagement survey results across male and female students from a 2013 EarSketch pilot study.
Across all seven engagement constructs, female students are less engaged at pre than their male counterparts but more
engaged at post than the male students.

belongingness as predictor variables and an intention to
persist in computing as an outcome variable. The litera-
ture in STEM education suggests that these constructs are
critical to enhancing the number of under-represented
students who persist in STEM fields [40]. Earlier ver-
sions of the instrument also adopted the Creativity Sup-
port Index [42], but more recently we have developed our
own questions to gauge students’ perceptions about crea-
tivity, building on prior research [43], [44] on creativity.

We now summarize findings of our 2013 pilot study
[45], in which we compared results of male and female
EarSketch students. The study included students in two
courses. One was an introductory computing course; the
other was an introductory music technology course. Both
included a similar EarSketch curricular module. 97 stu-
dents provided usable data across all student survey con-
structs, with 27% of them female and 73% male (a typi-
cal breakdown for these courses). Students did not know
they would be using EarSketch prior to course enroll-
ment.

Both male and female students showed statistically sig-
nificant increases from pre to post across all engagement
constructs (p < 0.01), with the exception of male confi-
dence (p = 0.07). Furthermore, female students expressed
greater pre-to-post change across all constructs than male
students; these differences are significant (p < 0.05) in
confidence, motivation, and identity and belongingness.
Figure 6 shows this visually: across all constructs, female
students are less engaged than their male counterparts
before they study EarSketch but are more engaged than
the male students after studying EarSketch. Both male
and female students’ content knowledge also significantly
increased from pre to post, but there were no significant
differences between male and female student gains in this
area. These results are discussed in more detail in [45].

Focus groups and free-response items in student sur-
veys suggest that the core design principles guiding
EarSketch play an important role in student engagement.
Some students remarked on the importance of personal
expression and creativity, commenting that “I got to ex-
press my ideas and it was fun and inspiring to see that I
could be good at computing” and “I enjoyed making my
own music tracks that people, including myself, actually
liked.” Others focused on the importance of real-world
context, noting that “I liked learning how music is made
and how we can learn and get good at doing things that
people in the music industry do now.” This seemed to
impact students’ interest in persisting in further study, as
evidenced by this comment from a focus group: “It gives
me choices for college. Like this is something I would
actually like to do for college and I'd actually like to do
probably with my life. Yeah. I would love to do it."

Our pilot studies have been more focused on computer
science content knowledge and attitudes than on music,
but in a fall 2015 pilot study, we did collect data on stu-
dents’ experiences with music prior to the course. 83% of
students stated that they listened to music for at least one
hour every day. Only 6% of students had mixed or com-
posed their own music prior to using EarSketch, and only

36% were involved in music performance activities such
as band, chorus, orchestra, or instrumental lessons. This
imbalance between music listening and music making
mirrors the data from the US National Endowment for the
Arts. In future studies we hope to measure if and how
EarSketch has engaged students in music making beyond
the course and beyond EarSketch itself.

These pilot results suggest that EarSketch has strong
potential to engage students — and particularly female
students — in computing and music at the introductory
level.

7. DISCUSSION AND FUTURE WORK
Adoption of EarSketch is growing rapidly, and we are
currently scaling up our research efforts to understand
how EarSketch impacts student engagement and content
knowledge across diverse populations and school con-
texts. Over the next two years, we will be expanding our
research efforts to study EarSketch in approximately 30
high school AP Computer Science Principles classrooms
in Georgia, using content knowledge assessments, en-
gagement surveys, observations, interviews, and focus
groups to understand how EarSketch impacts students
and how we can continue to improve it. As part of this
study, we are also comparing classrooms using EarSketch
to classrooms using other learning environments. We are
also using complex systems modeling techniques [46] to
model the complex sets of attributes and relationships
that underlie learning interventions.

 At the same time, we are expanding EarSketch to new
modalities and to new learning contexts. We are continu-
ing to develop a blocks-based visual programming editor
for EarSketch that will enable us to more successfully
incorporate it into classrooms with younger students. We
are also currently developing a collaborative, tabletop
interface suited for museum installations and outreach
events. We recently added support for P5 [47] into
EarSketch to support the generation of live visuals along-
side music, and are exploring ways to connect EarSketch
to physical computing systems such as the Moog Werk-
statt [48] and the Lilypad Arduino [49]. We are also in-
terested in finding ways to integrate EarSketch into other
computer music and general-purpose programming envi-
ronments.

Regardless of the modality and context, our goals re-
main the same: to engage a broad and diverse population
in making music and writing code, and in doing so to
spark their interest in these activities such that they per-
sist and continue to develop beyond a single learning
intervention.

Acknowledgements

The EarSketch project receives funding from the National
Science Foundation (CNS #1138469, DRL #1417835,
and DUE #1504293), the Scott Hudgens Family Founda-
tion, the Arthur M. Blank Family Foundation, and the
Google Inc. Fund of Tides Foundation. EarSketch is
available online at http://earsketch.gatech.edu. A com-

plete list of personnel on the EarSketch team is available
at http://earsketch.gatech.edu/landing/team2.html.

8. REFERENCES
[1] S. Iyengar, “How a Nation Engages with Art:

Highlights from the 2012 Survey of Publication
Participation in the Arts,” National Endowment for
the Arts, 57, 2013.

[2] Change the Equation, “Digital Native Does Not
Mean Tech Savvy,” 11-Jun-2015. [Online]. Avail-
able:
http://changetheequation.org/stemtistics/digital-
native-does-not-mean-tech-savvy. [Accessed: 25-
Mar-2016].

[3] Code.org, “Promote Computer Science,” Code.org.
[Online]. Available: https://code.org/promote. [Ac-
cessed: 25-Mar-2016].

[4] I. Peretz, “The nature of music from a biological
perspective,” Cognition, vol. 100, no. 1, pp. 1–32,
May 2006.

[5] J. M. Wing, “Computational thinking,” Commun
ACM, vol. 49, no. 3, pp. 33–35, 2006.

[6] J. Margolis, “Unlocking the Clubhouse: A Decade
Later and Now What?,” in Proceeding of the 44th
ACM Technical Symposium on Computer Science
Education, New York, NY, USA, 2013, pp. 9–10.

[7] National Science Foundation, “Science and Engi-
neering Degrees: 1996-2010,” 2013. [Online].
Available:
http://www.nsf.gov/statistics/nsf13327/content.cfm
?pub_id=4266&id=2. [Accessed: 25-Mar-2016].

[8] S.-J. Leslie, A. Cimpian, M. Meyer, and E. Free-
land, “Expectations of brilliance underlie gender
distributions across academic disciplines,” Science,
vol. 347, no. 6219, pp. 262–265, Jan. 2015.

[9] C. Scaffidi, M. Shaw, and B. Myers, “Estimating
the numbers of end users and end user program-
mers,” in 2005 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing, 2005, pp.
207–214.

[10] Gallup, “Images of Computer Science: Perceptions
Among Students, Parents, and Educators in the
U.S.,” Google, 2015.

[11] M. Anderson, “Technology Device Ownership:
2015,” Pew Research Center: Internet, Science &
Tech, 29-Oct-2015. .

[12] A. Perrin, “Social Media Usage: 2005-2015,” Pew
Research Center: Internet, Science & Tech, 08-
Oct-2015. .

[13] J. Maeda, “STEM+ Art = STEAM,” STEAM J.,
vol. 1, no. 1, p. 34, 2013.

[14] M. Guzdial, “A media computation course for non-
majors,” ACM SIGCSE Bull., vol. 35, pp. 104–108,
2003.

[15] S. Aaron and A. F. Blackwell, “From Sonic Pi to
Overtone: Creative Musical Experiences with Do-
main-specific and Functional Languages,” in Pro-
ceedings of the First ACM SIGPLAN Workshop on
Functional Art, Music, Modeling & Design,
New York, NY, USA, 2013, pp. 35–46.

[16] J. M. Heines, G. R. Greher, and S. Kuhn, “Music
Performamatics: Interdisciplinary Interaction,” in
Proceedings of the 40th ACM Technical Symposi-
um on Computer Science Education, New York,
NY, USA, 2009, pp. 478–482.

[17] B. Manaris and A. R. Brown, Making Music with
Computers: Creative Programming in Python, vol.
13. Boca Raton, FL: CRC Press, 2014.

[18] M. Puckette, “Combining event and signal pro-
cessing in the MAX graphical programming envi-
ronment,” Comput. Music J., pp. 68–77, 1991.

[19] G. Wang, P. R. Cook, and S. Salazar, “ChucK: A
Strongly Timed Computer Music Language,”
Comput. Music J., vol. 39, no. 4, pp. 10–29, Dec.
2015.

[20] J. McCartney, “Rethinking the Computer Music
Language: SuperCollider,” Comput. Music J., vol.
26, no. 4, pp. 61–68, Dec. 2002.

[21] Y. Orlarey, D. Fober, and S. Letz, “Syntactical and
semantical aspects of Faust,” Soft Comput., vol. 8,
no. 9, pp. 623–632, Jul. 2004.

[22] M. Resnick, J. Maloney, A. Monroy-Hernández, N.
Rusk, E. Eastmond, K. Brennan, A. Millner, E.
Rosenbaum, J. Silver, and B. Silverman, “Scratch:
programming for all,” Commun. ACM, vol. 52, no.
11, pp. 60–67, 2009.

[23] D. Bau, D. A. Bau, M. Dawson, and C. Pickens,
“Pencil code: block code for a text world,” in Pro-
ceedings of the 14th International Conference on
Interaction Design and Children, 2015, pp. 445–
448.

[24] V. J. Manzo and W. Kuhn, Interactive Composi-
tion: Strategies Using Ableton Live and Max for
Live. Oxford: Oxford University Press, 2015.

[25] J. Frankel, “ReaScript,” 2005. [Online]. Available:
http://www.reaper.fm/sdk/reascript/reascript.php.
[Accessed: 01-Jan-2015].

[26] L. Layman, L. Williams, and K. Slaten, “Note to
self: make assignments meaningful,” ACM SIGCSE
Bull., vol. 39, no. 1, pp. 459–463, 2007.

[27] R. E. Allsup, “Mutual learning and democratic ac-
tion in instrumental music education,” J. Res. Mu-
sic Educ., vol. 51, no. 1, pp. 24–37, 2003.

[28] R. Gurley, “Student perception of the effectiveness
of SmartMusic as a practice and assessment tool on
middle school and high school band students,”
Texas Tech University, 2012.

[29] Y. Kafai, “Constructionism,” in Cambridge Hand-
book of the Learning Sciences, K. Sawyer, Ed.
Cambridge, MA: Cambridge University Press,
2006, pp. 35–46.

[30] L. Hetland, L. Winner, S. Veenema, and K. Sheri-
dan, Studio Thinking: The Real Benefits of Arts
Education. New York, NY: Teachers College
Press, 2007.

[31] D. W. Shaffer and M. Resnick, “‘ Thick’ Authen-
ticity: New Media and Authentic Learning.,” J. In-
teract. Learn. Res., vol. 10, no. 2, pp. 195–215,
1999.

[32] H.-S. Lee and N. Butler, “Making authentic science
accessible to students - International Journal of
Science Education,” Int. J. Sci. Educ., vol. 25, no.
8, pp. 923–948, 2003.

[33] O. Astrachan and A. Briggs, “The CS Principles
Project,” ACM Inroads, vol. 3, no. 2, pp. 38–42,
Jun. 2012.

[34] T. Magnusson, “ixi lang: A SuperCollider Parasite
for Live Coding,” in SuperCollider Symposium
2010, Berlin, 2010.

[35] J. Freeman and A. V. Troyer, “Collaborative Tex-
tual Improvisation in a Laptop Ensemble,” Comput.
Music J., vol. 35, no. 2, pp. 8–21, May 2011.

[36] A. Mahadevan, J. Freeman, B. Magerko, and J. C.
Martinez, “EarSketch: Teaching computational
music remixing in an online Web Audio based
learning environment,” in Proceedings of the 1st
Annual Web Audio Conference, Paris, 2015.

[37] D. Bau, “Droplet, a blocks-based editor for text
code,” J. Comput. Sci. Coll., vol. 30, no. 6, pp.
138–144, 2015.

[38] J. Freeman and B. Magerko, “Iterative composi-
tion, coding and pedagogy: A case study in live
coding with EarSketch,” J. Music Technol. Educ.,
vol. 9, no. 1, 2016.

[39] J. Freeman, “Survey of Music Technology,”
Coursera, 2015. [Online]. Available:

https://www.coursera.org/learn/music-technology.
[Accessed: 25-Mar-2016].

[40] E. Wiebe, L. Williams, K. Yang, and C. Miller,
“Computer science attitude survey,” Comput. Sci.,
vol. 14, no. 25, 2003.

[41] G. Knezek and R. Christensen, “Validating the
Computer Attitude Questionnaire (CAQ).,” 1996.
[Online]. Available:
http://files.eric.ed.gov/fulltext/ED398243.pdf.

[42] E. A. Carroll, C. Latulipe, R. Fung, and M. Terry,
“Creativity factor evaluation: towards a standard-
ized survey metric for creativity support,” in Pro-
ceedings of the seventh ACM conference on Crea-
tivity and cognition, 2009, pp. 127–136.

[43] T. M. Amabile, “Within you, without you: The
social psychology of creativity, and beyond,” The-
or. Creat., vol. 4, pp. 61–91, 1990.

[44] R. E. Mayer, “22 Fifty Years of Creativity Re-
search,” Handb. Creat., vol. 449, 1999.

[45] B. Magerko, J. Freeman, T. McKlin, M. Reilly, E.
Livingston, S. McCoid, and A. Crews-Brown,
“EarSketch: A STEAM-based Approach for Un-
derrepresented Populations in High School Com-
puter Science Education,” ACM Trans. Comput.
Educ., in press 2016.

[46] D. Llewellyn, M. Usselman, D. Edwards, R.
Moore, and P. Mital, “Analyzing K-12 Education
as a Complex System,” in Proceedings of the ASEE
2013 Annual Conference, 2013.

[47] L. McCarthy, “p5.js,” 2016. [Online]. Available:
http://p5js.org. [Accessed: 26-Mar-2016].

[48] C. Howe, “Analog Synthesizers in the Classroom,”
Georgia Institute of Technology, Atlanta, GA,
2014.

[49] L. Buechley, M. Eisenberg, J. Catchen, and A.
Crockett, “The LilyPad Arduino: using computa-
tional textiles to investigate engagement, aesthet-
ics, and diversity in computer science education,”
in Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, New York,
NY, USA, 2008, pp. 423–432.

