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ABSTRACT
This paper describes handwaving, a system for participatory
mobile music based on accelerometer gesture recognition.
The core of the system is a library that can be used to rec-
ognize and map arbitrary gestures to sound synthesizers.
Such gestures can be quickly learnt by mobile phone users
in order to produce sounds in a musical context. The system
is implemented using web standards, so it can be used with
most current smartphones without the need of installing
speci�c software.
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1 INTRODUCTION
During the last few decades, the introduction of computers
in music performance has had an important e�ect on the
expectations of the audience. As noted by Keislar [10], the
history of computer music has been one �rst of gradually
abstracting the production of sound away from the body
and, more recently, attempting to reconnect the body and
the physical gesture to sound once again. For music where
computers are involved, the audience no longer expects to
see every detail of the music creation process, and it is typi-
cally assumed that performers could be checking their email.
While the aesthetics of acousmatic music have reached pop-
ular culture and some musicians prefer to perform in total
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darkness, some sort of interaction between performers and
audience usually hints that music is being performed live.

With the ubiquity of smartphones and mobile data, the sit-
uation has become even more complex: now the audience can
check their email too. There is, in this sense, an opportunity
for technologies that enhance interaction between audience
and performers, rather than distracting each party. The stan-
dardization of mobile technologies and the recent improve-
ments of web standards have greatly increased the potential
for audience participation in music performances. Research
on audience participation, initially an aesthetic pursuit, is
now of interest to a wider community of computer-mediated
music practitioners. While some research has focused on the
use of smartphones for capturing and documenting music
performances [12], their use for participation and interac-
tion with the music creation process has a unique potential
for engaging audiences. In the extreme case, the distinction
between audience and performer can be eliminated, and a
music performance can be entirely designed as an audience-
driven process.

In this paper we describe handwaving, a system for enhanc-
ing audience participation in music performance through mo-
bile phone technologies. We exploit the fact that many people
carry a device capable of sound synthesis and equipped with
an accelerometer sensor. Our system allows the de�nition of
a vocabulary of gestures, which should be easy to learn by
music performance audiences. Given some examples, gen-
erated in advance, a machine learing model is trained to
recognize the corresponding gestures, which are mapped
to di�erent sound synthesizers. The system is implemented
using web standards, which make it simple and quick to
deploy software on audience devices in live performance
settings. The training interface is also implemented as a web
application, which allows a group of people to provide train-
ing examples, as opposed to having a single individual train
the system. We expect training data from multiple users to
produce more robust models for audience participation.

2 MOBILE AND PARTICIPATORY MUSIC
The idea of mobile music started taking shape before the in-
troduction of smartphones, on the basis of increasing sound
capabilities of mobile phones and PDAs [19]. Initial research
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focused on exploring the space of interaction design enabled
by the di�erent available sensors [4], as well as by social
interaction enabled by ubiquity [19]. While initial mobile
orchestra performances also preceded smartphones [21], the
standardization and ease of programming associated with
them fostered the popularization of mobile orchestras fol-
lowing the tradition of laptop orchestras [17].
During the last few years, much research on mobile music
has focused on audience participation. For example in echobo
[14], the audience of a music performance was able to inter-
act with a "master musician", playing along with an acoustic
musician. In massMobile [7], the sound of the performance
was centralized and users could interact with the system
through a web client/server architecture. A similar central-
ized system with web control was implemented in Swarmed
[8]. The recent development of web standards, which are
rapidly implemented in mobile browsers, has greatly sim-
pli�ed the problem of audience participation. In addition
to Web Audio, many standardized capabilities and sensors
are now available to web applications, such as acceleration,
vibration, or location. Recent research has focused on web-
based participation [23]. As an example, the participatory
concert of the second Web Audio Conference showcased
a number of approaches for audience participation using
smartphones and web standards [2, 9, 13, 16, 20].

3 GESTURE RECOGNITION
Body language, and particularly hand gestures, are an im-
portant part of human and animal communication. Since the
popularization of three-axis accelerometers, �rst in game
controllers such as the Wii remote, and then in smartphones,
gesture recognition has become relevant to many applica-
tions, such as mobile user interfaces. Gesture recognition
has also been widely used for artistic performance [3]. Most
traditional approaches use either Dynamic Time Warping
(DTW) [15] or Hidden Markov Models (HMM) [11]. It is also
common to experiment with other common classi�ers, such
as K-Nearest Neighbors (KNN) or Support Vector Machines
(SVM) [22]. These procedures usually require careful seg-
mentation and annotation of gestures, and their evaluation
is often con�ned to laboratory experiments.
Neural networks and deep learning methodologies have
quickly become the mainstream method for machine learn-
ing. By stacking several types of neural network layers, deep
learning systems are able to learn intermediate representa-
tions from data, thus reducing the amount of expert knowl-
edge required. Like in other domains, deep learning tech-
niques have been applied to smartphone sensors [18]. In
this paper, we describe an application of neural networks
for mobile accelerometer gesture recognition. The data used
for training the network is not manually segmented, thus

reducing the need of manual annotation.
Some works have provided tools for exploiting machine
learning algorithms in music performances, using personal
computers[1, 6]. Contrastingly, our system focuses on recog-
nizing gestures and mapping them to musical sounds directly
on a mobile phone, without the need of a PC or laptop. We
propose an implementation based on web standards, which
makes it very easy to quickly engage casual participants in
music performances as well as other settings such as instal-
lations or museums.

4 SYSTEM DESCRIPTION
Repetitive Gestures
Our system is based on recognition of simple gestures, which
are commonly associated to discrete events. Simple gestures
are slowly making their way to mobile interaction, for ex-
ample, shaking (for undoing something) is the only non-
touch gesture in Apple’s IOS human interface guidelines.1 A
"double twist" gesture for activating the camera was intro-
duced in version 7.0 of Android. For music contexts, discrete
events signaled by gestures can be useful, but associating
speci�c gestures with the resulting musical events may take
some time to users, especially in the context of audience
participation. In addition, gestures for speci�c tasks must
assume a "silent" (i.e. no gesture) background, while in music
very diverse regimes of action vs inaction may be used. For
these reasons, we opted for a general continuous recognition
model, which includes a silence gesture.

This also means gestures are recognized in relatively short
temporal windows (e.g. 2 seconds), and have no de�nite
phases (no onset or o�set). The system thus focuses on os-
cillatory movements, which in our experiments have been
mostly limited to simple repetitive movements along each ac-
celerometer axis (up-down, left-right) and other basic move-
ments (twisting and circular movement). Figure 1 shows
some examples.

Recognition Framework
In terms of machine learning, the system is relatively straight-
forward. Accelerometer data consists of three coordinates,
x ,y, z, that represent acceleration of the phone in each di-
mension. All three signals are analyzed using the Short-Time
Fourier Transform (STFT) and stacked to form a feature vec-
tor. The data is fed into a neural network with one hidden
layer, using sigmoid activations. The hidden layer has the
same number of units as the input. A �nal softmax layer is
used to predict the gesture class. For training, we use half-
window overlaps, while in the test stage, data is analyzed

1https://developer.apple.com/ios/human-interface-guidelines/interaction/
gestures/

https://developer.apple.com/ios/human-interface-guidelines/interaction/gestures/
https://developer.apple.com/ios/human-interface-guidelines/interaction/gestures/
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Figure 1: Examples and accelerometer data plots for three gestures.

and input to the network for each new sample. A longer hop
size can be used for reducing CPU usage.

Web application
The system is implemented using web technologies and
Javascript libraries. This makes it possible to quickly proto-
type applications that can be executed in most recent smart-
phones without installing additional software. Accelerome-
ter data is available through the DeviceMotionEvent API.2
This API currently o�ers a gravity-corrected version of ac-
celerometer data, which may be supported depending on the
hardware. However the most widely supported version is
"accelerationIncludingGravity", which is the raw accelerom-
eter data. This is the call currently used in handwaving. Ac-
celerometer data is thus captured in real time in a browser
window.

A simple web application is used for collecting training
data. This step is typically done in advance by a group of
users during the preparation of a speci�c performance or

2https://www.w3.org/TR/orientation-event/

application. Training examples generated with their smart-
phones is sent to a web server and saved as a JSON �le. The
data collection application allows creating and deleting ges-
tures, and recording examples of each class. This results in
recordings of variable length which are labelled according to
the gesture class. The recognition model is trained with this
data using Convnetjs.3 This step is currently implemented
as an o�ine task, although it could be also executed in a
browser. With the amount of data used in our experiments
(see Section 5), a model can be trained in les than a minute
with a current laptop.

The web application also allows managing sounds and
mapping gestures to sounds. Sound synthesis is currently
done using �ockingjs,4 a library that mimics the syntax for
creating synth de�nitions in SuperCollider, as well as a sub-
set of its unit generators. This allows easily coding a wide
variety of sounds with a low entry fee for composers and
musicians familiar with SuperCollider. Synth de�nitions are

3http://cs.stanford.edu/people/karpathy/convnetjs/
4http://�ockingjs.org/
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written in the web interface in JSON format, and assigned to
each gesture along with a mapping expression. The mapping
expression allows the synthesizer assigned to each gesture
to make use of the raw accelerometer values as parameters
for increasing the expressivity and variability of the sound.
A mapping expression typically consists of simple arithmetic
operations de�ned in Javascript. For example a mapping can
associate the parameter osc1. f req of the synth de�nition
with the expression 440 ∗ (1 + 0.01 ∗ x ), where x is the value
for the accelerometer x-axis. The code for mapping expres-
sions is loaded by the performance interface and evaluated
in order to update the synth in real time.

Performance scripts
Given a model trained for a set of gestures, and the corre-
sponding synths and mappings, a basic example web page
is provided that allows using a phone as a musical instru-
ment. This basic setup can already be used for mobile per-
formance or audience participation by hosting the code in
a web server. The audience can then just visit a web page
that will download the neural network model along with the
synth de�nitions and mappings to their mobile browser, de-
tect gestures, and produce the corresponding sounds. More
complex compositions can be coded as a sequence of web
pages representing di�erent parts of a composition, or in
more involved web applications. In our initial performances
we have explored di�erent mappings, additional client fea-
tures such as haptic feedback, as well as server functionality
for compositional decisions depending on group behavior
(see Section 6).

5 DATASET AND EVALUATION
In order to test our system, we collected a dataset of ges-
tures using the web application. The data was generated by
5 di�erent users including the authors. The dataset and a
pre-trained model are available in the software repository,
and can be readily used for music creation with the basic
set of gestures. In this section, we describe an evaluation
experiment for the recognition system using this dataset,
and motivate our parameter choices.

The dataset consists of 10 recordings of each of 7 ges-
ture classes: left / right (lr ), up / down (ud), tilt (tilt ), circles
(circ), forward / backwards (f b), concave (conc) and convex
(conv) (in our experiments, silence was better detected sim-
ply using a threshold on acceleration). The recordings were
preprocessed to remove initial silence (accelerometer values
between tapping the record button and starting repetitive
gestures). While the speci�cation does not include a value
for the sampling rate of accelerometer data, we tested several
devices and found a consistent value of 60 Hz. The record-
ings were cut down to a common minimum of 800 points (13

Figure 2: Mean classi�cation accuracy using either raw or
FFT features, as a function of the window size. Error bars
indicate standard deviation.

seconds), so the same amount of data was available for each
class. The time series was segmented using a �xed length
moving window and half-window overlap. The resulting
vectors were either fed directly to the neural network or an-
alyzed by an FFT module to extract the magnitude spectrum
(i.e., an STFT with rectangular window) The network was
set to the same number of units as the input, so FFT features
used half the number of units both in the visible and hidden
layer. A �nal softmax layer was used to predict the gesture
class. We compared di�erent window sizes and the use of
FFT analysis in a cross-validation setting. For each fold, the
model was trained with 9 recordings and evaluated on the
remaining one, and computed accuracy as the fraction of
correctly classi�ed windows across the test recordings of
all classes. Figure 2 shows the result for di�erent window
sizes (8, 16, 32, 64 and 128 samples). The best accuracy is
achieved when using FFT features, which are able to make
better use of longer windows. For very short windows (e.g. in
the order of half a second), raw features could be used. While
in real-time usage we implemented the system to perform
recognition with a hop size of one sample, it may be desir-
able to modify the window or hop size in order to reduce
the computational cost. We found that continuous recogni-
tion performed well with most current smartphones. Older
smartphones (e.g. an iPhone 4) may have both compatibility
and performance issues. We found that as a rule of thumb
a phone that is able to run a current version of the Chrome
browser (version 57 at the time of this writing) will be able
to run our system. A capability check page is provided as
part of the web application framework.
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Figure 3: Confusion matrix using 128ms window and FFT
features.

Figure 3 shows a confusion matrix for the di�erent classes
with the best set of parameters. Most confusions happen
between "up-and-down" (which tends to involve more unin-
tended movement along horizontal axes) and "circles" (which
includes movement across the vertical axis). While we are
experimenting with more complex gestures (such as alpha-
bet letters), it is obvious that smaller number of classes will
result in better recognition. At the same time, gestures which
make use of di�erent accelerometer axes will be easiest to
tell apart. However, the proposed framework does not intend
to explicitly model these gestures, and can in principle be
trained to recognize arbitrary shapes.

6 INITIAL PERFORMANCES
The idea of audience participation in music performance af-
fords the possibility of a shift with respect to the traditional
views of authorship, and the historical roles assigned to com-
poser, performer and spectator of music. In the extreme case
of audience participation, technology can be used to create
musical experiences that are focused on the audience itself,
instead of on a performer. In this sense, the development of
audience participation enables a performance genre that is
signi�cantly di�erent from both traditional setting, where
the role of the audience is generally limited to signs of appre-
ciation towards the performer/s, and the acousmatic setting,
where no performer is in sight, but the audience remains
passive.
We used handwaving to try the idea of a purely audience-led
music performance named "Do the Buzzer Shake". The piece
was inspired by online cultural transmission through memes,
while exploiting the role of imitation typically associated

with gestures and gesture-based communication, music and
dance. The sounds we used were based on square-wave oscil-
lators in order to maximize the loudness of sounds produced
by mobile phones.

The piece was rehearsed several times in classroom and lab
environments with groups of between 5 and 15 students, and
once with a group of 100 students. It was later performed in
public during the second International Conference of Live In-
terfaces (ICLI2016), and in the �rst annual Concert of Women
in Music Tech held at Georgia Tech in Atlanta.

During the development of the piece, a structure of three
parts was devised. In the �rst part, participants explored the
use of the accelerometer and synchronization with others by
trying to achieve consonance (identical phone orientations)
or dissonance (di�erent orientations). In the second part,
participants explored the di�erent gestures and their musical
mappings and learnt them from each other. In the �nal part,
synchronization was "mandatory": the server would count
the number of participants performing each gesture, and
participants performing minority gestures were "punished"
with a quick vibration and a short period of silence. The
duration of the silence increased progressively in order to
induce a sparse ending unless a total synchronization was
achieved.

During the rehearsals and public performances it became
clear that the audience was engaged and enjoyed the ex-
perience, and that they could easily learn the gestures and
play the associated sounds. While participants were always
instructed to be quiet, the absence of a central �gure and
the playfulness of the situation made it very unlikely that
they would remain silent. Although the music was made out
of drones with varying degrees of frequency stability, creat-
ing both harmonic and chaotic patterns, the atmosphere of
participation had some parallels with group behavior in elec-
tronic dance music clubs, where the DJ is not necessarily the
center of attention. In this sense, our research connects with
previous investigations on music control by large groups [5]

We are working on new music works using the system,
with the aim to improve the immersion through better sound
ampli�cation and visuals, while preserving the level of en-
gagement and the focus on collective experience.

7 CONCLUSIONS
With so many people carrying pocket computers with mul-
tiple sensors and sound capabilities, audience participation
is likely to become a more important aspect of music per-
formance. In this paper, we have proposed a framework for
participatory mobile music based on mapping arbitrary ac-
celerometer gestures to sound synthesizers on mobile phones.



AM ’17, August 23–26, 2017, London, United Kingdom Gerard Roma, Anna Xambó, and Jason Freeman

Figure 4: A moment in the ICLI 2016 performance
(photo: ICLI2016 organization committee).

We have provided an initial dataset and shown that the sys-
tem is able to learn new gestures with a few examples. Fi-
nally, we have described initial experiences using this system
in audience-driven participatory performances. As future
work, we hope to simplify the process of training and keep
collecting data for new gestures, eventually contributing
to the de�nition of collective vocabularies for participatory
mobile music. The code and dataset can be obtained from
https://github.com/g-roma/handwaving.
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