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The general adoption of smartphones, and the rapid development and implementation of
new web standards supporting their capabilities, have created a promising platform for par-
ticipatory music. In this paper we analyze the use of accelerometer gesture recognition in
this context, which brings the issue of generalizing to multiple users. We describe Handwav-
ing, a system based on neural networks for real-time gesture recognition and sonification on
mobile browsers. We evaluate the system using a multi-user dataset. Our results show that
training with data from multiple users improves classification accuracy, supporting the use
of the proposed algorithm for user-independent gesture recognition. Finally, we describe our
experiences in participatory music using the system.

0 Introduction

During the last few decades, the introduction of comput-
ers in music performance has had a noticeable (and often
disruptive) effect on the expectations of the audience. As
noted by Keislar [1], the history of computer music has
been one first of gradually abstracting the production of
sound away from the body and, more recently, attempting
to reconnect the body and the physical gesture to sound
once again. For music where computers are involved, the
audience no longer expects to see every detail of the music
creation process, and it is assumed that it may as well be
automated, and performers could be checking their email
[2]. While the aesthetics of acousmatic music [3] have
reached popular culture and some musicians prefer to per-
form in total darkness, some sort of interaction between
performers and audience usually hints that music is being
performed live.

With the ubiquity of smartphones and mobile data, the
situation has become even more complex: now the audi-
ence can check their email too. Yet beyond disconnecting
performers and audience, the technology offers new op-

portunities for creating shared experiences. In particular,
the standardization of mobile technologies and the recent
improvements of web standards make it easier than ever
to quickly develop and deploy software for audience par-
ticipation in music performances. Research on audience
participation, initially an aesthetic pursuit, is now of in-
terest to a wider community of computer-mediated mu-
sic practitioners. While some research has focused on the
use of smartphones for capturing and documenting music
performances [4], their use for participation and interac-
tion with the music creation process has a unique potential
for engaging audiences. This includes a wide range of set-
tings, with various degrees of participation. In the extreme
case, the distinction between audience and performer can
be eliminated, and a music performance can be entirely de-
signed as an audience-driven process.

In this paper we describe Handwaving, a system for
enhancing audience participation in music performance
through mobile phone technologies. We exploit the fact
that many people carry a device capable of sound synthe-
sis and equipped with an accelerometer sensor. Our sys-
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tem allows the definition of a vocabulary of gestures, which
should be easy to learn by music performance audiences.
Given some examples, generated by the author/s of a music
piece, a machine learning model can be trained to recog-
nize the corresponding gestures, and they can be mapped
to sound synthesizers. The system is implemented using
web standards, which makes it simple and quick to deploy
software on audience devices in live performance settings.
The training interface is also implemented as a web appli-
cation, which allows a group of people to provide training
examples. This collective utilization, both in the training
and performance stages, can be seen as a new use case with
respect to previous research on gesture recognition for mo-
bile music. In order to explore this use case, we extend the
work presented in [5] with a new dataset and additional
experiments. The paper is organized as follows: Section 1
contains a brief historical account of research on mobile
and participatory music. In Section 2 we review existing
approaches to accelerometer gesture recognition. The pro-
posed system is described in Section 3, and evaluated in
Section 4. In Section 5 we describe some initial experi-
ences using the system, and in Section 6 we draw some
conclusions.

1 Mobile and participatory music

The idea of mobile music started taking shape before the
introduction of smartphones, on the basis of the increasing
sound capabilities of mobile phones and PDAs [6], as well
as the commercialization of early tablet PCs [7]. Initial re-
search focused on exploring the space of interaction design
enabled by the different available sensors [8], as well as by
social interaction enabled by ubiquity [9, 6]. While initial
mobile orchestra performances also preceded smartphones
[10], the standardization and ease of programming associ-
ated with them fostered the popularization of mobile or-
chestras following the tradition of laptop orchestras [11].
During the last few years, much research on mobile mu-
sic has focused on audience participation. For example in
echobo [12], the audience of a music performance was
able to interact with a ”master musician”, playing along
with an acoustic musician. In massMobile [13], the sound
of the performance was centralized and users could inter-
act with the system through a web client/server architec-
ture. A similar centralized system with web control was
implemented in Swarmed [14]. In Open Symphony [15], a
group of improvising performers are directed by the audi-
ence through a voting system. The recent development of
web standards, which are rapidly implemented in mobile
browsers, has greatly simplified the problem of audience
participation. In addition to Web Audio, many standardized
capabilities and sensors are now available to web applica-
tions, such as acceleration, vibration, or location. Recent
research has focused on web-based participation [16, 17].
As an example, the participatory concert of the second Web
Audio Conference showcased a number of approaches for
audience participation using mobiles and web standards
[18, 19, 20, 21, 22].

2 Gesture recognition

Body language, and particularly hand gestures, are an
important part of human and animal communication. Since
the popularization of three-axis accelerometers, first in
game controllers such as the Wii remote, and then in
smartphones, gesture recognition has become relevant to
many applications, such as mobile user interfaces. Most
traditional approaches use either Dynamic Time Warping
(DTW) [23] or Hidden Markov Models (HMM) [24]. It is
also common to experiment with other common classifiers,
such as K-Nearest Neighbors (KNN) or Support Vector
Machines (SVM) [25]. These procedures usually require
careful segmentation and annotation of gestures, and their
evaluation is often confined to laboratory experiments. In
this paper, we propose a system for gesture recognition
using neural networks. Neural networks and deep learn-
ing methodologies have quickly become the mainstream
method for machine learning. Like in other domains, deep
learning techniques have been applied to smartphone sen-
sors [26]. Numerous learning frameworks based on neu-
ral networks and backpropagation are now available. As an
example, we use ConvnetJS1, a Javascript library for deep
learning that allows us to implement recognition in a mo-
bile browser in real time. Unlike many systems, the data
used for training the network in our system is not manually
segmented, thus reducing the need of manual annotation.
In gesture recognition it is common to distinguish between
user-dependent and user-independent systems [25, 27].
In the first case, the same person that will use the sys-
tem is expected to train it. In the second case, the model
should be able to recognize any user’s gestures. In aca-
demic evaluation, user-dependent systems typically result
in better performance. However, for real-world applica-
tions this adds the burden of having the user provide train-
ing data. In the field of music creation, numerous works
have investigated gesture recognition [28, 29], also some
works have provided generic tools for exploiting machine
learning algorithms in music performances [30, 31]. Most
of these systems assume a use case where the artist will
train the machine learning model in an interactive setting
on a personal computer. For this reason, it is rare to find
reports on recognition accuracy. Hence they can be re-
garded as user-dependent systems. Participatory music is
a different use case. In order to support collective control
and understanding of the different gestures, the dictionary
needs to be shared and consistent. Thus, we propose that
a user-independent system is required. Also unlike previ-
ous works, our system allows mapping gestures to musi-
cal sounds directly on a mobile phone, without the need
of a PC or laptop. We propose an implementation based
on web standards, which makes it very easy to quickly en-
gage casual participants in music performances as well as
other settings such as installations or museums. We also
provide insights on the performance of different features
and different learning settings by evaluating a specific ges-
ture dictionary. Our results show that recognition accuracy

1http://cs.stanford.edu/people/karpathy/convnetjs/
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improves when the system is trained with gestures from
multiple users.

3 Handwaving

This section describes Handwaving, a software protoype
that supports research on mobile and participatory music
through recognition and sonification of accelerometer ges-
tures.

3.1 Repetitive Gestures
Our system is based on recognition of simple gestures,

which are commonly associated to discrete events. Sim-
ple gestures are slowly making their way to mobile inter-
action, for example, shaking (for undoing something) is
the only non-touch gesture in Apple’s IOS human inter-
face guidelines.2 A ”double twist” gesture for activating
the camera was introduced in version 7.0 of Android. For
music contexts, discrete events signaled by gestures can be
useful, but associating specific gestures with the resulting
musical events may take some time to users, especially in
the context of audience participation. In addition, gestures
for specific tasks must assume a ”silent” (i.e. no gesture)
background, while in music very diverse regimes of action
vs inaction may be used. For these reasons, we opted for
a general continuous recognition model, which includes a
”silence” gesture class. This also means gestures are recog-
nized in relatively short temporal windows (e.g. 2 seconds),
and have no definite phases (no onset or offset). The sys-
tem thus focuses on oscillatory movements, which in our
experiments have been mostly limited to simple repetitive
movements along each accelerometer axis. Figure 1 shows
some examples.

3.2 Recognition framework
In terms of machine learning, the system is relatively

straightforward. Accelerometer data consists of three coor-
dinates, x,y,z, that represent acceleration of the phone in
each dimension. All three signals are analyzed using the
Short-Time Fourier Transform (STFT) and stacked to form
a feature vector. The data is fed into a neural network with
one hidden layer, using sigmoid activations. The hidden
layer has the same number of units as the input. A final
softmax layer is used to predict the gesture class. For train-
ing, we use half-window overlaps, while in the test stage,
data is analyzed and input to the network for each new sam-
ple. A longer hop size can be used for saving CPU power,
depending on the application.

3.3 Web application
The system is implemented using web technologies and

Javascript libraries. Given the ubiquity of wireless net-
works and mobile broadband, this makes it very conve-
nient to quickly prototype applications that can be exe-

2https://developer.apple.com/ios/
human-interface-guidelines/interaction/
gestures/

cuted in most recent smartphones without installing ad-
ditional software. Accelerometer data is available through
the DeviceMotionEvent API.3 This API currently offers
a gravity-corrected version of accelerometer data, which
may be supported depending on the hardware. However
the most widely supported version is ”accelerationInclud-
ingGravity”, which is the raw accelerometer data. This is
the call currently used in handwaving. Accelerometer data
is thus captured in real time in a browser window. In order
to train the recognition model, this data is sent to a web
server and saved as a JSON file. The interface used for
capturing training data consists of a simple web applica-
tion that allows creating and deleting gestures, and record-
ing examples of each class. This results in recordings of
variable length which are labelled according to the gesture
class. The recognition model is trained with this data using
Convnetjs. This step is currently implemented as an offline
task, although it could be also executed in a browser. With
the amount of data used in our experiments (Section 4), a
model can be trained in less than a minute with a current
laptop.

The web application also allows managing sounds and
mapping gestures to sounds. Sound synthesis is currently
done using flockingjs4, a library that mimics the syntax
for creating synth definitions in SuperCollider, as well as
a subset of its unit generators. This allows easily coding a
wide variety of sounds with a low entry fee for composers
and musicians familiar with SuperCollider. Synth defini-
tions are written in the web interface in JSON format, and
assigned to each gesture along with a mapping expression.
The mapping expression defines how, in addition to the ba-
sic map that associates the gesture with the synth defini-
tion, the accelerometer axes are used directly to modify the
sound in real time. A mapping expression typically con-
sists simply of arithmetic operators. For example a map-
ping can associate the parameter osc1. f req of the synth
definition with the expression 440 ∗ (1 + 0.01 ∗ x), where
x is the value for the accelerometer x-axis. Mapping ex-
pressions are evaluated as Javascript code and executed in
order to update the synth in real time.

3.4 Applications
Given a model trained for a set of gestures, and the corre-

sponding synths and mappings, a basic example web page
is provided that allows using a phone as a musical instru-
ment. This basic setup can already be used for mobile per-
formance or audience participation by hosting the code in
a web server. The audience can then just visit a web page
that will download the neural network model along with the
synth definitions and mappings to their mobile browser, de-
tect gestures, and produce the corresponding sounds. More
complex compositions can be coded as a sequence of web
pages representing different parts of a composition (if the
sound does not need to be continuous between sections), or
in more involved web applications. With respect to learn-

3https://www.w3.org/TR/orientation-event/
4http://flockingjs.org/
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Fig. 1. Examples and accelerometer data plots for three gestures.

ing the gestures, the system allows a number of configu-
rations depending on who trains and who uses the model.
For example, a single individual could train a model for in-
divual use during a performance, a single individual could
train the system for the audience to use, or a group of users
could train it for either individual or collective usage. We
expect this to have an impact on recognition performance
so we analyze several configurations in section 4.3.

4 Evaluation experiments

This paper focuses on recognition of a shared dictionary
of gestures for participatory music. This requires models
that can be used by naive users without training the model
themselves. In this section we extend the evaluation pub-
lished in [5] with a new dataset that includes user identi-
fiers, as well as further experiments to compare single and
multi-user training configurations. The code and dataset
for training the system can be obtained from https:
//github.com/g-roma/handwaving.

4.1 Dataset
We collected a new dataset through the web application

(Section 3.3). We asked several remote participants to pro-
vide recordings of 7 classes: left / right (lr), up / down (ud),
tilt (tilt), circles (circ), forward / backwards ( f b), concave
(conc) and convex (conv) (in our experiments, silence was
better detected simply using a threshold on acceleration).

Participants were provided an example video of each ges-
ture class and asked to submit at least two recordings. For
simple user identification, the system automatically associ-
ated each user with a device fingerprint. In order to obtain
a consistent dataset, data was reduced to 9 users (includ-
ing 2 of the authors) and 2 recordings per user per class.
The recordings were preprocessed to remove initial silence
(accelerometer values between clicking the record button
and starting oscillatory movements). While the specifica-
tion does not include a value for the sampling rate of ac-
celerometer data, we tested several devices and found a
consistent value of 60 Hz. The recordings were cut down
to a common minimum of 500 points (8 seconds), so the
same amount of data was available for each class.

4.2 Input features
We conducted a first experiment to compare the use of

raw accelerometer data to the magnitude spectrum. While
deep neural networks are being used to learn representa-
tions from lower level features in several domains, this of-
ten requires large amounts of training data. Initial experi-
ments with more hidden layers showed no improvements
with practical amounts of training data in our case. The ex-
periment is the same as presented in [5], but here we used
the new dataset and user-wise stratified sampling. The time
series of accelerometer data was segmented using a fixed
length moving window and half-window overlap. The re-
sulting vectors were either fed directly to the neural net-
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work or analyzed by an FFT module to extract the mag-
nitude spectrum (early experiments with traditional STFT
windows did not provide better results, so a rectangular
window is used). The network was set to the same num-
ber of units as the input, so FFT features used half the
number of units both in the visible and hidden layer. A
final softmax layer was used to predict the gesture class.
We compared different window sizes and the use of FFT
analysis in a stratified 10-fold cross-validation setting. For
each fold, the two recordings of each user were aggregated
and partitioned proportionally, resulting in equal amounts
of training and test data for each user in the dataset.
Figure 2 shows the result for different window sizes (8, 16,
32, 64 and 128 samples). The best accuracy was achieved
when using FFT features, which are able to make better
use of longer windows. This confirms the results in [5]:
in this case, a more even spread of data among multiple
users results in a wider difference between raw and FFT
features. While in real-time usage we implemented the sys-
tem to perform recognition with a hop size of one sam-
ple, it may be desirable to modify the window or hop size
in order to reduce the computational cost. We found that
continuous recognition performed well with most current
smartphones. Older smartphones (e.g. an iPhone 4) may
have both compatibility and performance issues. A capa-
bility check page is provided as part of the web application
framework.

Figure 3 shows a confusion matrix for the different
classes with the best set of parameters. Most confusions
happen between ”up/down”, ”concave” and ”convex” ges-
tures, all of which are dominated by the vertical axis.
While we are experimenting with more complex gestures
(such as alphabet letters), it is obvious that smaller num-
ber of classes will result in better recognition. At the same
time, gestures which make use of different accelerometer
axes will be easiest to tell apart. However, the proposed
framework does not intend to explicitly model these ges-
tures, and can in principle be trained to recognize arbitrary

Fig. 2. Mean classification accuracy using either raw or FFT fea-
tures, as a function of the window size. Error bars indicate stan-
dard deviation.

shapes. More complicated dictionaries may require adding
more parameters to the network (e.g. more hidden layers)
which would increase the computational cost and usually
require more training data.

4.3 User configurations
Since our system is intended to be used by casual par-

ticipants, we expected it to be more robust if trained by
multiple individuals. However, it may also be interesting
for single individuals to design participatory music perfor-
mances. In order to provide some insight to the use of our
system in both cases, we analyzed several configurations,
roughly corresponding to potential use cases.

• Multi-user: This is the same configuration used for Ex-
periment 4.2. Since it uses a cross-validation setting it
is the most efficient use of the dataset. It represents the
general case where the training does not depend on a
specific user. Results were averaged across 10 folds.

• Single-user: In this case, we trained the system for each
user using one of the recordings, and evaluated using the
second recording. Results were averaged across 9 users.
This represents the use case of an individual performer.

• Cross-user: We also tried training the system for each
user (using one recording) and testing with another ran-
dom user. This provides an insight (with equal amount
of training and test data points) on the problems for gen-
eralizing across users.

• One-to-Many: In this case, we trained the system with
all data from a single user and tested against the rest
of data. Results were averaged across users. This repre-
sents the use case where one individual user trains the
system for a participatory performance.

• Many-to-One: In order to test user-independent recog-
nition, we trained the system with data from all users but
one, which was used for testing. Results were averaged
across users.

Table 4.3 shows the accuracy (mean and standard de-
viation) obtained with each of the configurations, along

Fig. 3. Confusion matrix using 128ms window and FFT features.
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with the number of training and test examples and the
number of averaged models. As expected, the multi-user
cross-validation setting achieves the best and most robust
result, as it has been trained with more data and more mod-
els have been averaged. Using smaller amounts of training
data, single-user models can also achieve good accuracy.
This suggests that the system can be used both in single
and multi-user settings. On the other hand, both the Cross-
user and One-to-Many settings represent clearly more chal-
lenging cases. This shows that models trained by a single
user will tipically not generalize so well to other users. Fi-
nally, the Many-to-One setting provides very good results,
comparable to cross-validation, which shows that our sys-
tem can be used for user-independent gesture recognition.
In all, the results confim the intuition that robust mod-
els for participatory music should be trained by multiple
users, while models for individdual performance can still
be trained by the performer.

5 Experiences in participatory music

The idea of audience participation in music performance
affords the possibility of a shift with respect to the tra-
ditional views of authorship, and the historical roles as-
signed to composer, performer and spectator of music. In
the extreme case of audience participation, technology can
be used to create musical experiences that are focused on
the audience itself, instead of on a performer. In this sense,
the development of audience participation enables a per-
formance genre that is significantly different from both tra-
ditional setting, where the role of the audience is generally
limited to signs of appreciation towards the performer/s,
and the acousmatic setting, where no performer is in sight,
but the audience remains passive. With respect to the ex-
pectations of current audiences, these ideas can be traced
back to John Cage and to the Fluxus movement [32], how-
ever current mobile and web technologies facilitate rapid
experimentation on this front, as smartphones can be triv-
ially used both for communication and sound production.
We used Handwaving to experiment with purely audience-
led performances (in the sense that there are no performers
except for the audience) in two pieces.

The first one was ”Do the Buzzer Shake” [33]. The
piece was inspired by online cultural transmission through
memes, while exploiting the role of imitation typically as-
sociated with gestures and gesture-based communication,

Table 1. Results for different user configurations

Configuration Mean Acc. (Std) N. Train N. Test N. Models

Multi-user 0.94 (0.00) 882 126 10

Single-user 0.87 (0.08) 56 56 9

Cross-user 0.50 (0.13) 56 56 9

One-to-Many 0.54 (0.04) 112 896 9

Many-To-One 0.94 (0.07) 896 112 9

music and dance. The sounds we used were based on
square-wave oscillators in order to maximize the loudness
of sounds produced by mobile phones.

The piece was rehearsed several times in classroom and
lab environments with groups of between 5 and 15 stu-
dents, and once with a group of 100 students. It was later
performed in public during the second International Con-
ference of Live Interfaces (ICLI2016), and in the first an-
nual Concert of Women in Music Tech held at Georgia
Tech in Atlanta (GA, USA).

During the development of the piece, a structure of three
parts was devised. In the first part, participants explored
the use of the accelerometer and synchronization with oth-
ers by trying to achieve consonance (identical phone orien-
tations) or dissonance (different orientations). In the sec-
ond part, participants explored the different gestures and
their musical mappings and learnt them from each other.
In the final part, synchronization was ”mandatory”: the
server would count the number of participants perform-
ing each gesture, and participants performing minority ges-
tures were ”punished” with a short vibration and a short pe-
riod of silence. The duration of the silence increased pro-
gressively in order to induce a sparse ending unless a total
synchronization was achieved.

During the rehearsals and public performances, it was
visible that participants had no problems learning the ges-
tures. While they were always instructed to be quiet, the
disappearance of a central figure clearly created a differ-
ent situation and it was very rare that participants would
remain silent. However from their explorative disposition
and laughters, we concluded they were engaged and en-
joying the experience. Although the music was made out
of drones with varying degrees of frequency stability, cre-
ating both harmonic and chaotic patterns, the atmosphere
of participation had some parallels with group behavior in
electronic dance music clubs, where the DJ is not neces-
sarily the center of attention. In this sense, our research
connects with previous investigations on music control by
large groups [34]

A second piece, ”Hyperconnected Action Painting” was
presented in the 3rd Web Audio Conference [35]. In this
case, we restricted the dictionary to three gestures, asso-
ciated with painting actions: ”up-down”, ”left-right” and
”splash”. Gestures performed by the audience resulted in
visible traces in a collective painting that was projected.
The music was based on field recordings of street jazz,
with the playback speed modulated by the accelerometer.
Also, in this case a ”global” music background was played
through the PA in addition to the sounds from the smart-
phones. The painting metaphor, particularly the splash ges-
ture, required the introduction of some constraints in the
detection procedure, leaning towards discrete gestures. We
hope to investigate segmentation more formally in the fu-
ture. The result was also promising in terms of audience
engagement, and the introduction of amplified sound im-
proved the acoustic experience, while introducing the chal-
lenge of balancing the mixture.

6 J. Audio Eng. Sco., Vol. 1, No. 1, 2010 October
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6 Conclusions

With so many people carrying pocket computers with
multiple sensors and sound capabilities, there is a great po-
tential for increased audience participation in music per-
formances. In this paper, we have proposed a framework
for participatory mobile music based on mapping arbitrary
accelerometer gestures to sound synthesizers on mobile
phones. We have provided an multi-user dataset and shown
that the system is able to learn new gestures with a few ex-
amples. We have used this system to illustrate the relevance
of user-independent training for multi-user settings.
We have also described initial experiences using this sys-
tem in audience-driven participatory performances. Our
experiences have helped validating the system while re-
flecting on the potential for evolving the social organiza-
tion of music performance.
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