PREPRINT

This is the authors’ accepted manuscript, the article has been accepted for publication in the Journal of the Audio Engineering Society:
Anna Xambd, Gerard Roma, Pratik Shah, Takahiko Tsuchiya, Jason Freeman, and Brian Magerko (2018). Turn-taking and Online
Chatting in Co-located and Remote Collaborative Music Live Coding. Journal of the Audio Engineering Society, 66(4), 253256.
Please refer to the published version here: http://www.aes.org/e-1lib/browse.cfm?elib=19391.

Turn-taking and Online Chatting in Co-located and
Remote Collaborative Music Live Coding

ANNA XAMBO

(a.xambo@qmul.ac.uk)

Queen Mary University of London, London, UK
Georgia Institute of Technology, Atlanta, USA

GERARD ROMA
(g.roma@hud.ac.uk)

University of Huddersfield, Huddersfield, UK
Georgia Institute of Technology, Atlanta, USA

PRATIK SHAH, TAKAHIKO TSUCHIYA, JASON FREEMAN, BRIAN MAGERKO

(prats110892 @gmail.com, takahiko @ gatech.edu, jason.freeman @ gatech.edu, magerko @ gatech.edu)

Georgia Institute of Technology, Atlanta, USA

Collaborative music live coding (CMLC) approaches the music improvisation practice of
live coding in collaboration. In network music, co-located and remote interactions are possi-
ble, and communication is typically supported by the use of a chat window. However, paying
attention to simultaneous multi-user actions, such as chat texts and code, can be demanding to
follow. In this paper, we explore co-located and remote CMLC using the live coding environ-
ment and pedagogical tool EarSketch. In particular, we examine the mechanism of turn-taking
and the use of a small set of semantic hashtags in online chatting by using an autoethno-
graphic approach of duo and trio live coding. This approach is inspired by (1) the practice
of pair programming, a team-based strategy to efficiently solving computational problems;
(2) the language used in short messaging service (SMS) texting and social media. The results
from an online survey with six practitioners in live coding and collaboration complements the
autoethnographic findings and point to education as the most suitable domain for this approach
to CMLC. We conclude discussing the challenges and opportunities of turn-taking and the use

of semantic hashtags focusing on educational settings.

0 INTRODUCTION

Live coding and collaboration is a promising approach
to the established discipline of computer-supported coop-
erative work (CSCW) in the musical domain. Collabora-
tive music live coding (CMLC) brings collaboration into
live coding, a well-known musical improvisation practice
in computer music. Using chat mechanisms has been found
to support communication between the either co-located or
remote live coders in CMLC [1, 2, 3, 4]. A similar collab-

orative live coding practice that organizes the group work-
flow in a turn-taking fashion between the roles of a driver
and a navigator is pair programming [5], which is used in
industry and computer science (CS) education.

Inspired by both CMLC and pair programming, in this
paper we explore the promises and challenges of support-
ing communication features for turn-taking pair program-
ming in EarSketch [6], a live coding environment and ed-
ucational tool. We particularly explore the use of semantic
hashtags in a chat window and a shared code editor, simi-

http://www.aes.org/e-lib/browse.cfm?elib=19391

XAMBO ET AL.

lar to Google Docs collaborative editing, in both co-located
and remote pair programming, with a group of two and
three users respectively. With a few exceptions [7], editing
a shared single script is a novel approach to CMLC, where
we typically find examples of live coders editing their own
individual scripts (e.g., JITlib [8]) or individual shared ed-
itors where each live coder can edit others’ editors (e.g.,
Gabber [9]).

Our main research question is: How do music live coders
collaborate, and what design paradigms for live coding
tools can effectively support these collaboration modes?
In particular, we aim at examining whether and how turn-
taking supports collaborative live coding. We are interested
in understanding: (1) duo vs trio conditions: what can be
the tasks undertaken by the different collaborators based
on the turn-taking and pair programming model of driver vs
navigator(s) and whether there are any differences between
the configurations of one driver vs one navigator and one
driver vs two navigators; (2) using a chat window: whether
a chat window is an effective mechanism for communica-
tion and, if so, how it is used; (3) using semantic hashtags:
whether using a small set of semantic hashtags that enforce
turn-taking in the chat window is helpful in a collaborative
session; (4) co-located vs remote conditions: what are the
main differences between the co-located and remote con-
ditions. We adopted an autoethnographic approach already
used for understanding a live coding environment [10] be-
cause it can help to gain a first thorough insight from a live
coder perspective.

This study builds on our prior research on co-located
CMLC using EarSketch [11]. This study contributes with
a comparison between co-located and remote conditions
with the same duo and trio of live coders. The results of an
online survey with six practitioners in live coding and col-
laboration complement our findings, which indicated the
following: (1) remote turn-taking and online chatting is
a promising approach in CS education that can be used
in both onsite and online classes; (2) turn-taking in per-
formance can easily become too predictable, both in co-
located and remote settings, and thus should be combined
(if used it at all) with other collaboration strategies; (3) the
use of own invented hashtags (as opposed to provided hash-
tags) in online chatting is a promising approach to peer
communication, especially in education.

1 RELATED WORK

This section presents relevant work within the context of
computer-supported cooperative work (CSCW) and com-
puter music live coding (CMLC), where we highlight: first,
relevant performance and education live coding environ-
ments, communication tools in CSCW and CMLC, and our
related prior work; second, research on turn-taking and pair
programming; third, language used in SMS and social me-
dia.

PREPRINT

1.1 CSCW and CMLC

The field of CSCW looks at how group activities can
be computationally supported. Barbosa [12] proposes a
classification of computer-supported collaborative mu-
sic (CSCM) systems based on the dimensions of space
and time, inspired by a classification space for CSCW:
location of players (co-located vs remote), and perfor-
mance synchronicity (synchronous vs asynchronous).
Synchronous/co-located 1is exemplified by interactive
tabletops; synchronous/remote is exemplified by video-
conferencing; asynchronous/co-located is exemplified by
a post-it interface; and asynchronous/remote is exempli-
fied by a version control system. This research focuses
on synchronous interaction in CSCM, both co-located and
remote.

1.1.1 Performance Environments for CMLC

Small group collaboration using individual screens and
working as a network with a shared clock is reported in
[13]. For example, Gibber implements network time syn-
chronization that is controlled by a master server where
each client needs to adjust any differences [9]. A com-
mon collaborative live coding configuration is working in
pairs [14]. Collaborative live coding in large groups, un-
der democratic rules, is investigated by the Republic sys-
tem [15]. The recent advent of the Web Audio APL! in
JavaScript, has enabled a number of projects to explore the
possibilities of mobile orchestras and participatory audi-
ence with their mobile devices using their browser and con-
nected to a network [16]. With a few exceptions, such as the
UrMus live coding language for mobile phones used exten-
sively by the Michigan Mobile Phone Ensemble [17], there
is little research on live coding on mobile devices, particu-
larly participatory live coding, which seems an interesting
direction to computationally support collaboration among
large groups.

1.1.2 Learning Environments for CMLC

Scratch? is a blocks-based programming language,
which can be used to create a variety of multimedia ap-
plications, most often games. Scratch has been used in
music-related projects, for example, for teaching com-
putational thinking through music in the classroom [18].
Live coding comes into play when using infinite loops
and algorithmic composition (cf. [19]). Another example
is Sonic Pi,? an open source live coding environment for
teaching computing concepts through music, which runs
on the tiny computer Raspberry Pi [1]. To our knowledge,
platforms for live coding in learning environments have
been researched and designed focusing on individual use,
as opposed to collaborative use as a key component in
education.

There is a significant amount of research on the peda-
gogical benefits of live coding in education, as evidenced

http://www.w3.org/TR/webaudio
2http: //scratch.mit.edu
3http://sonic-pi.net

https://www.w3.org/TR/webaudio
https://scratch.mit.edu
http://sonic-pi.net

PREPRINT

in the special issue on “Live Coding for Music Education,”
published in the Journal of Music, Technology & Educa-
tion [20]. This issue included an analysis of the challenges
and opportunities of teaching live coding in the classroom
using EarSketch [21]. Our focus on CMLC in education is
a follow-up of this work.

1.1.3 Communication Tools in CSCW and CMLC

There exist a number of environments that support real-
time collaboration for text editing (e.g., SubEthaEdit,*
ShareLatex,> Overleaf);° learning (e.g., Virtual Math [22]);
and coding (e.g., CodeCircle [23]). The most common
characteristics for supporting real-time collaboration, in
alignment with CSCW design recommendations, include:
(1) shareable links; (2) users’ online presence; (3) color
coding users; (4) levels of access permissions; (5) com-
munication tools (e.g., chat, commenting); (6) visual feed-
back of real-time multiple-interaction; (7) version history;
(8) error handling as a shared experience.

Facilitating networked collaboration and communica-
tion is reported as essential for CMLC [3]. As a follow-
up of Section 1.1.1, music live coding environments that
support communication tools include Overtone [1], Gibber
[24], Betablocker [25], the Republic quark [15] in Super-
Collider, and Fluxus [25]. In Overtone, there is a text chat
panel that lets the members of a session send messages sep-
arated from the code. In Gibber, the system Gabber allows
users to meet in a chat room where shared editing of code
documents is possible [9]. Editing is in sync, but execution
is independent for each user. Other environments that sup-
port co-located and remote text-based collaborative music
improvisation and include a chat window are LOLC [2],
urMus [3], and Lich.js [4]. A study on a CSCW-based mu-
sic system reported that the chat was used for exchanging
descriptions of the users’ activities [26].

Our paper is based on the use of the communication tools
traditionally used in CSCW for supporting awareness and
communication among team members, such as a chat, a
buddy list, and a code editor as a shared space. Turn-taking
in EarSketch is a first step towards supporting real-time
collaboration using these tools. How these tools might be
used effectively in CMLC is an open question that we in-
vestigate in this study.

1.1.4 Our Prior Studies

This study is a follow-up of the studies reported in
[14, 27, 11]. Co-located human-human interaction in edu-
cation has been explored in [14], where we proposed three
approaches to real-time collaboration: (1) a shared script
accessed from a single terminal in turns (live pair program-
ming); (2) a shared script accessed from multiple individual
terminals at any time (multiple live coding); (3) a shared
script accessed from two individual terminals at any time
(pair live coding). Co-located CMLC focusing on turn-

4http: //codingmonkeys.de/subethaedit
Shttp://www.sharelatex.com
Shttp://www.overleaf.com

TURN-TAKING AND ONLINE CHATTING IN CMLC

taking is investigated in [11], where we explored a merged
version of the above three approaches to CMLC. Each user
had an individual terminal (like in pair or multiple live cod-
ing), the roles were strictly divided into driver and naviga-
tor (like in live pair programming), with the addition of a
second navigator for trio live coding (like in multiple live
coding). In this study we expand the turn-taking work by
also looking at remote CMLC.

1.2 Turn-taking and Pair Programming in CSCW

The organization of turn-taking has been studied in
conversation analysis since late 1960s and early 1970s
[28]. Supporting turn-taking has been a topic of research
of CSCW and groupware technology since early 1990s
[29]. Interaction analysis has included both verbal and
non-verbal communication when analyzing technology-
enhanced collaborative settings [30], where both talk-
driven interaction (e.g., ‘turns at talk’) and instrumental
interaction (e.g., ‘turns with bodies’ and ‘turns with arti-
facts’, such as two kids taking turns with a mouse when
playing a game) are examined.

Pair programming [5] is an established practice in CS
where two programmers, a driver and a navigator, collab-
orate on the same computational problem (e.g., designing,
coding or testing) and after a certain amount of time (e.g.,
10 minutes) they switch roles. Whilst the driver is in charge
of writing the code, the navigator is responsible of both
the long-run thinking, in particular the nitty-gritty details
and potential errors, such as syntax errors. Turn-taking be-
tween a small number of users is described in a seminal
paper [31] on designing systems for collaborative musical
experiences as a useful protocol for assessing new musical
instruments, notably in [32, 33]. This study is influenced
by pair programming practices, but supporting larger small
groups than pairs in a turn-taking fashion of a driver and a
few navigators, and applied to the domain of music com-
puting, which is novel in the literature.

1.3 Language in SMS and Social Media

The literature indicates that using short messaging ser-
vice (SMS) texting and social media hashtags do not inter-
fere with formal writing [34, 35]. Features of SMS mes-
saging include the use of short utterances, abbreviations,
emoticons, and other symbols [36]. Syntactical and lex-
ical reductions are applied in SMS texting to reduce ef-
fort, time, and space [37]. These practices have extended
to chats, instance messaging, tweets, and Internet-related
communication in general.

Our approach to SMS and social media hashtags is to
take advantage of their established use among students but
applied to facilitate the communication between live coders
during a CMLC session. Here the use of the SMS texts
and social media hashtags benefits an informal learning
environment where efficient communication is in the fore.
Supporting an informal language style, commonly used be-
tween students, can increase the intention to persist in pro-
gramming, which is a well-known challenge in CS educa-
tion [6].

https://codingmonkeys.de/subethaedit
http://www.sharelatex.com
https://overleaf.com

XAMBO ET AL.

EarSketch asour CcoNTACT Discuss

PREPRINT

[RD_WORLD_PERCUSSION_KALIMBA_PIANO_10.

[RD_CINEMATIC_SCORE_DRUMPART_1

'RD_WORLD_PERCUSSION_KALIMBA-PIANG_1

WORLD_PERCUSSION_KALIMBA PIANO_1
WORLD_PERCUSSION KALIMBA_PIANO_10
ORE_DRUMPART_1

fom()| N
aSection(perc,,start, 1, 1+duf)

Fig. 1. Screenshot of the proof-of-concept prototype of EarSketch with a collaborative code editor and a chat window.

2 CMLC & EARSKETCH

EarSketch [6] is a free online tool and curriculum de-
signed for learning to code Python or JavaScript languages
by making music with audio samples, beats, and effects.
It is inspired by a digital audio workstation (DAW) inter-
face and supports both composition and live coding fea-
tures [14]. Next we detail the collaboration capabilities of
EarSketch and the prototype version used in this study.

2.1 EarSketch and Collaboration

Collaboration in EarSketch has been progressively im-
plemented. The first phase introduced the capability of
sharing scripts through links or users and sharing the audio
on SoundCloud. Another feature added was to automati-
cally retain the metadata of the original script, such as the
title and author name. Using the workflow of importing the
code before allowing users to edit ensures that the author-
ship is attributed when the users share or publish the script.
This study is designed as an early prototype of the planned
second and third phases of collaboration in EarSketch. The
second phase will allow multiple users to work on the same
script, permitting the possibility of real-time collaborative
script editing. The final phase plans to introduce features
that support peer-to-peer communication using a shared
chat window.

2.2 Proof of Concept

To explore our research question, we developed a pro-
totype version of EarSketch (see Figure 1) that added ba-
sic collaborative simultaneous editing features and a chat
window. The aim was at informing next iterations of the
web-based software. We used Firepad’ and Firechat® to in-
clude simultaneous code editing and online chatting, re-
spectively. Both applications are built on Firebase.’

Thttp://firepad.io
8http: //firechat.firebaseapp.com
http://firebase.google.com

Co-located Remote
script . script

o H

S H
o :

) H

3 H

o H

c H

< |
< H

Qo H

c 1

> H
@ : 8 8

navigator driver H navigator driver
script ;‘ script

2 H

=3 1

= H

1) H

3 |

[*] '

5 H

S H

3} H

c 1

A H

navigator driver navigator H navigator, driver navigater,

Fig. 2. Overview of the four use cases of our autoethnographic
study.

3 THE STUDY

In this section, we present the design of the autoethno-
graphic study and the survey to live coder practitioners
about turn-taking and online chatting in CMLC.

3.1 Autoethnographic Study

For an overview of the four use cases of the autoethno-
graphic study, which are based on the number of perform-
ers (two vs three) and presence type (co-located vs remote),
see Figure 2. In this section, we detail the task, protocol,
and research methods used for the four situations.

3.1.1 Task and Protocol

The task consisted in creating four 15-minute live coding
sessions, two co-located and two remote, with a duo and
a trio for each location (see Figure 2). For each live cod-
ing session, a group of live coders was asked to work on a
shared blank Python script of EarSketch using their own in-
dividual laptops. The group was expected to write code by
turn-taking and to communicate between the team mem-
bers (e.g., taking decisions) via the chat window. Each par-
ticipant was expected to act as driver at least once in each

https://firepad.io
https://firechat.firebaseapp.com
https://firebase.google.com

PREPRINT

session. The group was encouraged to communicate only
using an embedded chat window with a mindset of a per-
formance setting. The first person to start writing code was
suggested to be chosen by agreement of the group. In the
co-located condition, the assumptions were that perform-
ers are located in the same location and that one computer
connected to a PA system renders locally the musical per-
formance. In the remote condition, the assumptions were
that performers are located at different locations and that
each computer renders locally the musical performance.

For facilitating turn-taking in the chat window, the use
of the following semantic hashtags was suggested to the
group:

e #req for requesting a turn;
e #go for giving the turn;
e #run for running the code.

In the co-located condition, the latter hashtag meant that
the driver would execute the code to be sent to the PA sys-
tem. In the remote condition, both driver and navigator(s)
would execute the code to be sent to their own headphones.
Direct messages were encouraged using the username pre-
ceded with an at sign (e.g., @username).

3.1.2 Participants

The three participants (L1-L3) were expert musicians
with extensive experience in live coding. One of them, who
performed as part of the trio, was an expert in EarSketch.
The same co-located duo and trio groups participated in the
remote experience.

3.1.3 Data Collection and Analysis

Both scripts and comments in the chat window were
stored for qualitative data analysis. The session was video
recorded using the screencast software Snaglt.!” In the
co-located condition, the screencast software captured the
screen from the computer that was connected to the loud-
speakers while the group was working with EarSketch. In
the remote condition, the screencast video was captured
from one of the computers. We were inspired by an au-
toethnography perspective of reflecting on our own live
coding practice already used in live coding [10]. In the co-
located condition, we had conversations about the experi-
ence afterwards, which were combined with watching the
videos and reviewing the chat texts. Whilst in the remote
condition, we had a broader perspective and answered an
online questionnaire, which is explained next.

3.1.4 Survey

For the remote condition, we asked the live coders to
fill in a post-questionnaire with five open questions (see
Appendix I). They were framed within performance and
education; the overall experience (co-located vs remote);
the turn-taking approach to live coding; and the suitability
of the number of performers.

TURN-TAKING AND ONLINE CHATTING IN CMLC

3.2 Live Coding Community Study

We also conducted an online survey addressed to live
coder practitioners to obtain feedback about their prac-
tices and thoughts about collaborative music live coding,
which the intention to help framing the findings from the
autoethnographic study.

3.2.1 Task and Protocol

Participants were asked to (1) watch a 20-minute
video!'! of CMLC (which was a video extract of the re-
mote live coding sessions from the autoethnographic study)
and (2) fill in an online survey. The overall session was
designed to take 35 minutes or less to complete. The
video was shown as a proof of concept of turn-taking and
online chatting in collaborative music live coding. The
video showed two approaches to CMLC using EarSketch:
(1) trio live coding; (2) duo live coding. The aim of watch-
ing this video was to elicit ideas around CMLC that were
going to be discussed in the survey.

3.2.2 Survey

We were interested in surveying musicians who are prac-
titioners of live coding to gain insight into their practices
and expectations when collaborating with other live coders
(see Appendix II). In particular, we were trying to better
understand how live coders communicate while coding, the
roles they take, and the type of graphical user interfaces
(GUIs) or chat interactions they would prefer (e.g., emoti-
cons, hashtags, notifications on the screen, side comment
on the code they exchange, multimodal notifications such
as buzzers on the body or sounds). The survey combined
open-ended questions with 5-point Likert item questions
(from strongly disagree to strongly agree and 0 as N/A).

3.2.3 Participants

We sent an invitation to fill in the survey to some live
coding practitioners. We obtained responses from 6 male
live coder practitioners (P1-P6), with an age range of 25—
34 years old (1 participant) and 3544 years old (5 par-
ticipants). One had 7-9 years of experience with music
as a practitioner whilst 5 had more than 10 years of ex-
perience. Their experience with live coding was diverse,
ranging from less than 2 years (1 participant), 4-6 years
(2 participants), and more than 10 years (3 participants).
Similarly, their experience with collaborative music live
coding ranged from less than 2 years (2 participants), 2—
3 years (1 participant), 4-6 years (1 participant), and more
than 10 years (2 participants). The tools/technologies used
for live coding were varied, where participants tend to use
more than one tool, including SuperCollider (4 partici-
pants), TidalCycles (2 participants), LOLC (1 participant),
ChucK (1 participant), PureData (1 participant), Python (1
participant), Gibberwocky (1 participant), and own-built
environments (1 participant). The tools used to support

Video of remote duo vs trio live coding:

Ohttp://www.techsmith.com/screen-capture.htmlhttp://vimeo.com/242667005

https://techsmith.com/screen-capture.html
https://vimeo.com/242667005

XAMBO ET AL.

PREPRINT

Table 1. Overview of findings from the autoethnographic study

Co-located

Remote

Duo (1) Dynamic change of roles, participation, predictable linear
interactions, non-specialist roles (request/grant control),

little attention to the others’ actions.

(1) Smooth role negotiation,

non-specialist roles (request/grant control).

Duo (2) Peer learning, suggestions, planning, opinions,

reflections, coordination, communication between the team.

(2) Extensive use of chat, salutations, peer learning,
suggestions, planning, opinions, reflections,

coordination, collaboration, dialogue about what each other is doing.

Duo (3) #req, #go, #run used; @username not used. (3) #req, #go, #run used; @username not used.
Duo (4) Direct communication (e.g., verbal), physical awareness. (4) Lack of physical awareness of others, lack of visual cues.
Trio (1) Organic change of roles, specialist roles, (1) Non-specialist roles (request/grant control),

attention to the others’ actions.

competitiveness between navigators, inefficient change of roles.

Trio (2) Peer learning, suggestions, planning, opinions, reflections,

coordination, communication between the team.

(2) Extensive use of chat, salutations, peer learning,
suggestions, planning, opinions, reflections,

coordination, collaboration, communication with the driver.

Trio (3) #req, #go, #run used; @username used.

(3) #req, #go, #run used; @username used.

Trio (4) Direct communication (e.g., verbal), physical awareness.

(4) Lack of physical awareness of others, lack of visual cues.

their collaborative live coding sessions include SuperCol-
lider (3 participants), LOLC (1 participant), APICultor (1
participant), and code/music sharing via Slack, GitHub and
Lurk.org (1participant).

4 FINDINGS

In this section, we report and compare the four use cases
of trio and duo live coding in co-located and remote set-
tings from an autoethnographic perspective. Then we sum-
marize the results from the online survey conducted with
live coder practitioners.

4.1 Autoethnographic Study
4.1.1 Overview

We did two sessions of co-located CMLC in Atlanta
(GA, USA) with, a trio and a duo, respectively.12 One lap-
top was connected to two loudspeakers and a live coder was
responsible to run the script when one of the live coders
asked for it. The other one or two live coders were wear-
ing headphones that allowed them to preview sounds or
scripts independently, if necessary. In the remote condi-
tion,'3 the audio was not broadcasted via loudspeakers as in
the co-located condition. Live coders were wearing head-
phones instead. The rationale was that participants would
have the same “performance-with-no-latency” experience
(as opposed to only one listening to the PA and the audio
feeding back to the performers with latency). As shown in
Figure 3, the trio members were located in Atlanta (GA,
USA), London (UK), and Huddersfield (UK), whilst the
duo members were located in London and Huddersfield.
The four sessions lasted around 20 minutes each.

Table 1 overviews the main findings from the autoethno-
graphic study, which is structured according to our re-

12Video of co-located duo vs trio live coding:
http://vimeo.com/212639022
BVideo of remote duo vs trio live coding:

http://vimeo.com/242667005

search interests presented in Section 0 about (1) duo vs
trio conditions; (2) using a chat window; (3) using seman-
tic hashtags; (4) co-located vs remote conditions. The ta-
ble matches the study design with summaries of the perfor-
mance strategies used in each condition.

4.1.2 Co-located Trio Live Coding

Two navigators and one driver allowed us to have more
specialist roles. One task of the navigator was to pre-
view sounds with their headphones and suggest audio sam-
ples’ names that could suit well. This task was done au-
tonomously or requested by another live coder. If there was
an error when executing the code from the main terminal,
previewing the error from another terminal was also used
to solve the problem. As the piece included algorithmic el-
ements, every time that we pressed the run button there was
a change and thus executing the code multiple times pro-
duced an interesting variety of musical results. We ended
the piece with a combination of quick changes and execu-
tions of the code that resulted in a compelling glitch style.

We constantly used the chat window to explain un-
clear code snippets (e.g., “master track would be MAS-
TER_TRACK instead of track number” (L3)), share plans
of individual actions (e.g., “I want to make a longer beat
string algorithmically” (L3)), or suggest actions that oth-
ers could do (e.g., “maybe mute the tracks one by one?”
(L3)). The chat window was also used to plan parts of the
piece together (e.g., “btw we can start doing an ending?”
(L1)), ask for opinion or help (e.g., “are any of the groove
sounds good here? e.g. HOP_DUSTYGROOVEPART_001"
(L1)), and or comment about the musical results (e.g., “this
is nice” (L3)). Having three on board, allowed us to tell
others when we were done or tired of driving the session
(e.g., “and now ready for someone else with fresh ideas...”
(L3)). The three suggested tags were used for requesting,
granting, and asking the live coder of the master terminal
to execute code. However, direct or group messages were
generally assumed without making them explicit. For ex-
ample, @username was occasionally used and there were

https://vimeo.com/212639022
https://vimeo.com/242667005

PREPRINT

TURN-TAKING AND ONLINE CHATTING IN CMLC

Fig. 3. The setup of the remote trio live coding. From left to right: Atlanta (GA, USA), Huddersfield (UK), and London (UK).

instead other messages targeting individuals. We requested
an equal frequency of turns during the session. The ex-
pert live coder of EarSketch helped the team when us-
ing other functions than the common fitMedia () or
makeBeat (). For example, the expert live coder ex-
plained the makeBeatSlice () function via the chat
window (e.g., “each successive number is an index to a
different timestamp in the sound” (L3)). This saved us time
of looking at the EarSketch curriculum during the perfor-
mance session and was an instance of situated peer learning
[38].

4.1.3 Co-located Duo Live Coding

If compared to the trio live coding, we also equally re-
quested turns during the session, but the pace was faster.
From a driver perspective, it was more participative, but it
also felt more linear, like in a ping pong game of back and
forth with the ball, thus @username was not needed. The
session felt more predictable. In particular, the roles were
less specialized, focusing on alternating between driving
and navigating. Often times, the navigator was planning
her or his next move as a driver and paying less attention
to the driver’s actions because there was the impression of
time constraints. The chat window was used similar to how
we used it in the trio live coding session: as a tool for com-
munication to discuss about the code and the musical out-
put.

4.1.4 Remote Trio Live Coding

Here the navigators had less specialised roles and were
more focused on requesting and granting control. For ex-
ample, there were no instances of navigators suggesting
sounds to the driver. There were instances instead of ask-
ing the driver to change and improve their own code writ-
ten previously, e.g., “can you change in line 19 kalimba to
kalimba 2?” (1) or “can you change line 33 from 0.05 to
0.25? It’s mostly selecting a silent portion of the audio file.”
(L3). Turns were taken equally but the navigators needed to
be alert in order to take the opportunity to drive, otherwise
it was easy that the two fastest live coders were alternating
the lead. Navigators took any opportunity to request control
from the driver (“I can add a sound while you chat, #req”
(L2)) but sometimes had to wait considerably before their
request was granted (e.g., when fixing an unknown error).
Random and algorithmic effects were explored (e.g., an ar-

ray with a list of sounds that could be picked randomly),
which took effect every time the run button was pressed.
The chat window was extensively used to communi-
cate salutations (e.g., “hi” (L3)), remember the meaning
of the hashtags (“do you mean #run?” (L1)); requesting
and giving control with words in support of the hashtags
(“I want to give you control now” (L3)); asking changes
in the code on their behalf (see above); commenting about
how to change the code in case of an error or doubt (“se-
lect from a python list using random” (L3), “you are using
it wrong, selectRandomFile () wants a folder con-
stant, not a bunch of file names” (L3)); commenting about
the musical results or song structure (e.g., “those drums
are lonely in measure 6” (L3), “let’s do a solo and then
end” (L2)); and even commenting about how difficult was
to get a turn or lack of time to complete an idea (e.g., “but
I never finished my idea” (1.3)). There were also instances
of expressing the need to solve an error (e.g., “I'm getting
overlapping errors” (L2), “it’s not playing my track” (L2))
or solving errors in collaboration (e.g., discussing an al-
ternative random function to rand () within EarSketch,
like randint ()). Direct messages were used with and
without @username, as it was assumed that both naviga-
tors were mostly talking to the driver. Given the lack of
visual cues of seeing the other musicians not particularly
reinforced with the proof of concept either (e.g., lack of
information about idle users), it was hard to tell what was
happening beyond the code editor and the chat window.

4.1.5 Remote Duo Live Coding

Remote duo live coding was similar to the co-located
experience (e.g., non-specialist roles, @username was not
used in the chat window), but with the lack of the visual
cue. For example, it was difficult to tell whether the other
musician was active or idle: there was a situation where the
driver of that moment got disconnected from the Internet,
but the navigator did not notice it from the visual feedback
of the proof-of-concept interface: “it seems I was discon-
nected, back in.” (L2). There were more explanations of
the tasks that the other was doing: “listening to some sam-
ples” (L2). In the duo, it was easier to negotiate the turn
than in the trio (e.g., “let me fix it after your turn” (L1)).
In both duo and trio, there were instances of discussions
or suggestions about parameters and functions in the code

XAMBO ET AL.

(e.g., “what is the value of DELAY_TIME?” (L2)or “you
can create a loop” (L1)).

4.1.6 Our reflection

The two members who experienced both duo and trio
live coding preferred to work as a trio live coding. Partly
the fact that one of the live coders is an expert of EarSketch
helped. The combination of multiple specialized tasks in
co-located interaction makes the improvisation more var-
ied and serendipitous. The live coder needs to be skillful
with the programming language, as the musician needs to
master the musical instrument, even more if it is only a
group of two live coders.

Turn-taking in live coding reminded us of the cadavre
exquis collaborative game, where the more the merrier for
creative discovery, or hip hop concerts with several MCs.
However, we agreed that more than 3—4 people would im-
ply fewer opportunities to have control with turn-taking.

In co-located interaction, the preview feature with head-
phones was useful to the group, which allowed the navi-
gators to preview sounds before adding them to the shared
script or solve an error in the code while others were work-
ing with different tasks in parallel.

The lack of face-to-face communication in remote col-
laboration affected the performance. It made more difficult
to reinforce certain messages, e.g., be granted control when
the driver is engaged. It also made more difficult to imagine
the performance as a unified experience, e.g., it was hard to
imagine how the music was sounding in the performance
venue, mostly because we were equally using individual
headphones; or we felt that moments of control as a driver
were used more efficiently because navigators were wait-
ing their turn, instead of developing other complementary
roles as it happened in the co-located experience.

4.2 Live Coding Community Survey

Here we present the findings from surveying six live
coders about CMLC. The live coders expressed their opin-
ions about their thoughts and practice from watching a
video of our prototype, but they did not try the prototype
themselves.

As shown in Figure 4, participants expressed dislike
about working with provided hashtags (e.g. #req, #go,
#run) (M=1.5, SD=1.38). The boxplot shows a spread of
opinions where the zero value is related to a N/A an-
swer and an outlier above the fourth quartile of a partici-
pant who likes to use provided hashtags. Invented hashtags
raised slightly more interest (M=1.83, SD=1.47). A par-
ticipant would use “comments as #wow and instructions
as #pp” (P1) and another participant would use hashtags
for transitions and “to have some humorous elements as if
the musicians are casually collaborating and eventually to
enhance audience communication” (P2). One participant
highlighted his preference in avoiding the use of social me-
dia technology: “(I) prefer straightforward listening as a
way to collaborate and contribute. I think the music people
make sufficient for communication during a performance.”
(P6). This contrasts with how we used the provided hash-

PREPRINT

2 i
1

1
Provided Hashtags

Fig. 4. Boxplot on preference of using provided hashtags for six
participants (Mdn = 1.0, M=1.5, SD=1.38).

tags as a practical solution to communicate via the online
chat in the autoethnographic study.

As illustrated in Figure 5, participants disliked us-
ing a turn-taking mechanism mediated by the system
during a performance or live coding session (M=1.33,
SD=0.82). The boxplot shows that the distribution cen-
ters on the value 1, which indicates disagreement, ex-
cept for an outlier that expressed a neutral opinion. Four
participants mentioned turn-taking as a constrained and
slow mechanism for live performance and a system bet-
ter suited for other purposes: “turn-taking makes the
musical change slow and the benefits of it would be
rather in something else - pair-programming/educational
purposes/exploration/rehearsal/practice rather than ac-
tual performance.” (P2). A participant pointed to poten-
tial features that can make the turn-taking mechanism more
interesting, including “read-only mode (...), synchronizing
viewport (...), and awareness of ‘turn’” (P2). These opin-
ions are in line with the autoethnographic study’s findings
where we also found turn-taking as a slow mechanism.
However, for the co-located trio it worked as an interest-
ing collaborative strategy where different roles emerged.

Participants tended to like the option of multi-editing a
shared script (like in Google Docs) during the performance
or session (M=3.33, SD=1.37). Participants also tended to
like the option of the live coder to be able to edit her or
his own script during the performance or session (M=3.0,
SD=1.26). In terms of the GUI, participants tended to pre-
fer the use of a color-coding scheme applied to represent
the different peers who are contributing to the code/chat
during the performance or session (M=3.33, SD=1.75) and
the use of a mechanism that shows active vs idle users dur-
ing the performance or session (M=2.33, SD=1.37). Al-
though our prototype supports multi-editing in a shared
script, editing own scripts, and a chat window with a buddy
list, more situated information about the users was missed
(e.g., color-coding scheme, active vs idle users), which is
in line with these results.

An embedded chat was the most popular tool preferred
by live coders (3 participants) to communicate between
their peers in CMLC, although the other half of the par-
ticipants were skeptical about online chatting in co-located
CMLC. A participant highlighted the preference of com-
bining notifications with messages, to “see notifications
and then read the message” (P3). Another participant re-

PREPRINT

Fig. 5. Boxplot on preference of using turn-taking mechanism for
six participants (Mdn = 1.0, M=1.33, SD=0.82).

ported the use of instant messaging apps in remote CMLC
(e.g., Skype, Facebook). Two participants expressed their
preference for other ways of communicating, either “voice
based” (P5) or through the activity in the code (“cursor ac-
tivity (...) when typing in the same buffer” (P4)). However,
a participant raised concern about the difficulty of com-
municating via laptops: “Laptops are meant to facilitate
communication between a face and a screen. Live coding
has to deal with the consequence of this.” (P4). This vari-
ation explains the average neutral results from the Likert
item question about the preference of using an embedded
chat next to the code during the performance or session
(M=2.66, SD=1.86). More research should be done to ex-
plore the type of embedded chat that would work best for
CMLC situations.

Three of the participants reported their preference to
work as a duo live coding. A participant highlighted the
benefits of performing with more than two: “it’s more re-
laxed to keep the music going while changing the own
code, and also the possibilities with 3-4 people are greater,
since there is more musical input and generates different
reactions, and makes the music richer.” (P3). Another par-
ticipant commented that “for improvisation in a casual
setting - the number does not matter.” (P2). Most of the
participants said that they avoid switching roles in their
practice (4 participants), two of them in the context of
free improvisation (“I never work with roles, it is an aes-
thetic choice, I prefer that my collaborator expresses her-
selfin the musical context we create perhaps in the spirit of
free improv” (P6)), whilst one participant commented how
the group changes roles fluidly: “It depends on the music
which role whoever does, each member plays.” (P3). Inter-
estingly, from our autoethnographic experience, the roles
were paced by the pair programming model (as opposed
to musical roles, as discussed here) and we preferred the
trio configuration. This points to the multiple approaches
to CMLC and how a CMLC system should ideally support
this variety.

With the other Likert item questions, there was a diver-
sity of opinions, with tendency to dislike using emoticons
(M=1.83, SD=1.33); using SMS texting (M=2, SD=1.55);
commenting on the side of the code (M=2.33, SD=1.97);
and using multimodal notifications (e.g., buzzers on the
body, sounds) (M=1.5, $SD=1.38). Notifications on the
screen seemed to be preferred by most of the live coders

TURN-TAKING AND ONLINE CHATTING IN CMLC

(M=3.33, SD=1.97), so that the live coder can concentrate
on other tasks. In the autoethnographic study, the provided
hashtags were used frequently to communicate via the on-
line chat. A next step might be to link the hashtags to noti-
fications so that the peer communication is more efficient.

5 LESSONS LEARNED

Here we reflect on our practice of turn-taking live coding
within the broader picture of co-located and remote CMLC
in performance and education. We also discuss the poten-
tial of using semantic hashtags connected to the turn-taking
mechanism.

5.1 CMLC and Turn-Taking within Education

Turn-taking in CMLC appears to be a useful mechanism
for learning how to code. When we had an error, we had
comments from our peers on how to fix them. When some-
one was writing complex code, it was possible to follow
from the comments of the other peers. This was particularly
reinforced in remote trio live coding, where the two navi-
gators were focused on what the driver was doing. Turn-
taking seems suitable for an education setting because it
slows down the pace of coding, which can constraint more
thoughtful following of peer coding and encourage real-
time comments and help.

In duo live coding, the fact that both had a low level of
expertise in EarSketch, made it slower compared to when
there were three performers and one was an expert. In an
educational context, combining expert students with novice
students seems sensible. This configuration would allow a
teacher to correct and show to the learner(s) as necessary, to
help students debug, and to suggest the beginnings of new
computational or musical approaches that push the group
beyond their boundaries. Turn-taking could also work for
a non-hierarchical exchange between two persons with dif-
ferent skill sets.

Remote CMLC seems a suitable educational model in
situations where the student cannot work from the class-
room, e.g., when a student cannot commute, or when the
student needs to work further an assignment. This approach
can reinforce learning concepts beyond attending class and
engage new students with Science, Technology, Engineer-
ing and Mathematics (STEM) fields in a longer term. This
approach might also be useful for online courses.

5.2 CMLC and Turn-Taking within Performance

The experience of turn-taking recalls what Wessel and
Wright [39] describe as the catch and throw metaphor in
musical control, where there is a dialogue between a group
of musicians, in which the musical material is received,
modified, and sent in real time. In this case there is a shared
space where the musical material is changed under request.

The model of turn-taking seemed a little bit slow for a
performance setting, especially in remote collaboration. It
would be interesting to combine it with Google Docs-like
collaborative editing as discussed in [14]. It is still an open
question how to combine the structure provided by turn-

XAMBO ET AL.

taking with a more freestyle format provided by simultane-
ous multiple editors so that both performers and audience
understand what is going on. Replacing the turn-taking
hashtag mechanism with a GUI that mediates, shows, and
tracks the state of users would improve turn-taking in per-
formance. In remote collaboration, bringing a unified expe-
rience and a clear real-time representation of the different
user states is expected from a suitable CMLC environment.

Collaborative error solving can be integrated in a perfor-
mance setting by dividing roles (e.g., running the code pri-
vately before launching it to the shared space). Providing
personal spaces in CMLC is in line with previous research
on CSCW applied to music [26]. A balance needs to be
found between debugging in individual spaces and paying
attention to the driver’s actions.

Algorithmic and random behaviors were explored in the
code, and it is an open question whether certain behaviors
could be configured from the DAW as part of the driver’s
role. In co-located collaboration, this would liberate the
driver to the limited role of running the code. For exam-
ple, switching between a manual and an automatic mode
of running the code seems useful for both co-located and
remote settings.

5.3 Online Chat, Semantic Hashtags, and
Interaction Design

Using a chat window and hashtags was an effective
tool of communication in the autoethnographic study. The
hashtag language could include an easier way to get ac-
cess to the information about the functions and parame-
ters of the EarSketch API when trying to explain them
in the chat. Supporting the use of own invented hashtags
and vocabulary seems relevant here. Connecting hashtags
to visible notifications that go to either a user or the group
seems like the next step for improving the communication
in EarSketch (see Section 4.2).

In remote collaboration, it was hard to tell if the others
were active or not from the GUI. Making more visible the
color-coding scheme for users, or showing active vs idle
status, as preferred by the live coding community (see Sec-
tion 4.2), should be addressed following design guidelines
from CSCW literature. Adding an embedded chat next to
the code is fundamental in both co-located and remote sit-
uations, as evidenced here.

6 CONCLUSION

This paper looked into co-located and remote turn-
taking and online chatting in CMLC using the CS educa-
tional online platform EarSketch. We compared duo and
trio live coding from an autoethnographic stance. We found
that turn-taking in duo or trio live coding is more promis-
ing in education than in performance. We foresee that turn-
taking and chatting in CMLC, between small groups of
two, three, or four people, can be useful in the classroom
for pedagogical purposes. We found that the role of a chat
window is important as a tool for supporting communica-
tion in CMLC, but that our proposal of semantic hashtags

PREPRINT

should be reconsidered as a tailorable vocabulary adapted
to the needs of each group and perhaps linked to a noti-
fication system that facilitates the collaboration. From our
four use cases based on trio/duo vs co-located/remote sit-
uations, we discovered that a co-located trio live coding
mediated by a turn-taking mechanism can be more inter-
esting for group dynamics because the roles of a driver
and two navigators can specialize and adapt easily dur-
ing the musical improvisation act, while combining both
verbal and non-verbal communication. However, one size
does not fit all: we identified that a variety of group config-
urations (e.g., number of performers, types of roles) is pre-
ferred from the live coding community. We concluded that
an hybrid form of turn-taking combined with multi-editing
a shared script might be of more interest in performance.
We plan to continue this research towards improving the
collaboration support in EarSketch. We are interested in
exploring real-world setups for both co-located and remote
CMLC in education, which can contribute to CS and mu-
sic education. Future work also includes gathering students
response and exploring group dynamics.

7 ACKNOWLEDGMENTS

The authors are thankful to the participants of the study
and to the reviewers of the manuscript for their sugges-
tions. Most of the data collection and analysis of this re-
search was carried out while the first author was at the
Georgia Institute of Technology. The EarSketch project
receives funding from the National Science Foundation
(CNS #1138469, DRL #1417835, DUE #1504293, and
DRL #1612644), the Scott Hudgens Family Foundation,
the Arthur M. Blank Family Foundation, and the Google
Inc. Fund of Tides Foundation.

8 REFERENCES

[1] S. Aaron, A. F. Blackwell, “From Sonic Pi to Over-
tone: Creative Musical Experiences with Domain-Specific
and Functional Languages,” presented at the Proceedings
of the First ACM SIGPLAN Workshop on Functional Art,
Music, Modeling & Design, pp. 35-46 (2013).

[2] J. Freeman, A. V. Troyer, “Collaborative Textual Im-
provisation in a Laptop Ensemble,” Computer Music J.,
vol. 35, no. 2, pp. 8-21 (2011).

[3] S. W. Lee, G. Essl, “Communication, Control, and
State Sharing in Collaborative Live Coding,” presented
at the Proceedings of the 14th International Conference
on New Interfaces for Musical Expression, pp. 263-268
(2014).

[4] C. Mckinney, “Quick Live Coding Collaboration in
the Web Browser,” presented at the Proceedings of the 14th
International Conference on New Interfaces for Musical
Expression, pp. 379-382 (2014).

[5] L. Williams, R. Kessler, Pair Programming Illu-
minated (Addison-Wesley Longman Publishing Co., Inc.)
(2002).

[6] J. Freeman, B. Magerko, T. McKlin, M. Reilly,
J. Permar, C. Summers, E. Fruchter, “Engaging Underrep-

PREPRINT

resented Groups in High School Introductory Computing
through Computational Remixing with EarSketch,” pre-
sented at the Proceedings of the 45th ACM Technical Sym-
posium on Computer Science Education, pp. 85-90 (2014).

[71 G. Wakefield, C. Roberts, M. Wright, T. Wood,
K. Yerkes, “Collaborative Live-Coding Virtual Worlds
with an Immersive Instrument,” Proceedings of of the 14th
International Conference on New Interfaces for Musical
Expression (2014).

[8] J. Rohrhuber, A. de Campo, Just in Time Program-
ming, pp. 207-236 (The MIT Press) (2011).

[9] C. Roberts, K. Yerkes, D. Bazo, M. Wright,
J. Kuchera-Morin, “Sharing Time and Code in a Browser-
based Live Coding Environment,” presented at the Pro-
ceedings of the First International Conference on Live
Coding, pp. 179-185 (2015).

[10] T. Magnusson, “Confessions of a Live Coder,” pre-
sented at the Proceedings of the International Computer
Music Conference 2011 (ICMC ’11), pp. 609-616 (2011).

[11] A. Xambé, P. Shah, G. Roma, J. Freeman,
B. Magerko, “Turn-Taking and Chatting in Collabora-
tive Music Live Coding,” presented at the Proceedings of
the 12th International Audio Mostly Conference on Aug-
mented and Participatory Sound and Music Experiences,
pp. 24:1-24:5 (2017).

[12] A. Barbosa, Displaced Soundscapes: CSCW for
Music Applications, Ph.D. thesis, Universitat Pompeu
Fabra (2006).

[13] A. McLean, “Reflections on Live Coding Collab-
oration,” Proceedings of the Third Conference on Com-
putation, Communication, Aesthetics and X, pp. 213-220
(2015).

[14] A. Xamb6, J. Freeman, B. Magerko, P. Shah,
“Challenges and New Directions for Collaborative Live
Coding in the Classroom,” presented at the Proceedings of
the International Conference of Live Interfaces (2016).

[15] A. de Campo, “Republic: Collaborative Live
Coding 2003-2013,” presented at the A. Blackwell,
A. McLean, J. Noble, J. Rohrhuber (Eds.), Collabora-
tion and Learning through Live Coding (Dagstuhl Seminar
13382), pp. 152-153 (2014 September).

[16] B. Taylor, “A History of the Audience as a Speaker
Array,” presented at the Proceedings of the 17th Interna-
tional Conference on New Interfaces for Musical Expres-
sion, pp. 481-486 (2017).

[17] G. Essl, “The Mobile Phone Ensemble as Class-
room,” presented at the Proceedings of the 2010 Interna-
tional Computer Music Conference, pp. 506-509 (2010).

[18] A. Ruthmann, J. M. Heines, G. R. Greher, P. Lai-
dler, C. Saulters II, “Teaching Computational Thinking
through Musical Live Coding in Scratch,” presented at the
Proceedings of the 41st ACM Technical Symposium on
Computer Science Education, pp. 351-355 (2010).

[19] M. Edwards, “Algorithmic Composition: Compu-
tational Thinking in Music,” Communications of the ACM,
vol. 54, no. 7, pp. 58-67 (2011).

[20] A. R. Brown, “Editorial,” J. Music, Technology
Educ., vol. 9, no. 1, pp. 34 (2016).

TURN-TAKING AND ONLINE CHATTING IN CMLC

[21] J. Freeman, B. Magerko, “Iterative Composition,
Coding and Pedagogy: A Case Study in Live Coding with
EarSketch,” J. Music Teacher Educ., vol. 9, no. 1, pp. 37—
54 (2016).

[22] R. M. Magee, C. M. Mascaro, G. Stahl, “Designing
for Group Math Discourse,” presented at the Proceedings
of the 2013 Conference on Computer Supported Collabo-
rative Learning, pp. 312-319 (2013).

[23] J. Fiala, M. Yee-King, M. Grierson, “Collaborative
Coding Interfaces on the Web,” presented at the Proceed-
ings of the International Conference of Live Interfaces, pp.
49-58 (2016).

[24] C. Roberts, J. Kuchera-Morin, “Gibber: Live Cod-
ing Audio in the Browser,” presented at the Proceedings
of the International Computer Music Conference 2012, pp.
64-69 (2012).

[25] A.McLean, D. Griffiths, N. Collins, G. A. Wiggins,
“Visualisation of Live Code,” presented at the Visualisation
and the Arts, pp. 1-5 (2010).

[26] R. Fencott, N. Bryan-Kinns, “Hey Man, You’re In-
vading my Personal Space! Privacy and Awareness in Col-
laborative Music,” presented at the Proceedings of the 10th
International Conference on New Interfaces for Musical
Expression, pp. 198-203 (2010).

[27] A. Xambdé, G. Roma, P. Shah, J. Freeman,
B. Magerko, “Computational Challenges of Co-creation in
Collaborative Music Live Coding: An Outline,” presented
at the Proceedings of the 2017 Co-Creation Workshop at
the International Conference on Computational Creativity
(2017).

[28] H. Sacks, E. A. Schegloff, G. Jefferson, “A Sim-
plest Systematics for the Organization of Turn-Taking for
Conversation,” Language, vol. 50, no. 4, pp. 696-735
(1974).

[29] A. McKinlay, R. Procter, O. Masting, R. Wood-
burn, J. Arnott, “Studies of Turn-Taking in Computermedi-
ated Communications,” Interacting with Computers, vol. 6,
no. 2, pp. 151-171 (1994).

[30] B. Jordan, A. Henderson, “Interaction Analysis:
Foundations and Practice,” J. Learning Sciences, vol. 4,
no. 1, pp. 39-103 (1995).

[31] T. Blaine, S. Fels, “Contexts of Collaborative Mu-
sical Experiences,” presented at the Proceedings of the 3rd
International Conference on New Interfaces for Musical
Expression, pp. 129-134 (2003).

[32] H. Anne-Marie, J. A. Hans, R. Pirkko, “Two Shared
Rapid Turn Taking Sound Interfaces for Novices,” pre-
sented at the Proceedings of the 12th International Confer-
ence on New Interfaces for Musical Expression, pp. 470—
473 (2012).

[33] S. Fels, F. Vogt, “Tooka: Explorations of Two Per-
son Instruments,” presented at the Proceedings of the 2002
Conference on New Interfaces for Musical Expression, pp.
1-6 (2002).

[34] S. Aziz, M. Shamim, M. F. Aziz, P. Avais, “The
Impact of Texting/SMS Language on Academic Writing of
Students: What Do We Need to Panic About?” Elixir Lin-
guistics and Translation, vol. 55, pp. 12884-12890 (2013).

XAMBO ET AL.

[35] L. A. Shafie, N. Azida, N. Osman, “SMS Language
and College Writing: The Languages of the College Tex-
ters,” International J. Emerging Technologies in Learning,
vol. 5, no. 1, pp. 26-31 (2010).

[36] R. Godwin-Jones, “Emerging Technologies: Mes-
saging, Gaming, Peer-to-Peer Sharing: Language Learning
Strategies & Tools for the Millennial Generation,” Lan-
guage Learning & Technology, vol. 9, no. 1, pp. 17-22
(2005).

[37] M. S. G. B. Hamzah, M. R. Ghorbani, S. K. B. Ab-
dullah, “The Impact of Electronic Communication Tech-
nology on Written Language,” Online Submission, vol. 6,
no. 11, pp. 75-79 (2009).

[38] P. Dillenbourg, “What Do You Mean by ‘Collab-
orative Learning’?” in P. Dillenbourg (Ed.), Collabora-
tive Learning: Cognitive and Computational Approaches,
vol. 1, pp. 1-19 (Elsevier, Oxford, UK) (1999).

[39] D. Wessel, M. Wright, “Problems and Prospects for
Intimate Musical Control of Computers,” Computer Music
J., vol. 26, no. 3, pp. 11-14 (2002).

APPENDIX |

Here are the five open questions that we used in our on-
line questionnaire for the autoethnographic study:

1) How was the experience of turn-taking live coding and
chatting in a remote setting compared to your experience
in a co-located setting?

2) How do you find the model of remote turn-taking for a
performance setting?

3) Was the number of performers suitable for perfor-
mance? Briefly explain why.

4) How do you find the model of remote turn-taking for an
educational setting?

5) Was the number of performers suitable for an educa-
tional setting of remote turn-taking live coding? Briefly ex-
plain why.

APPENDIX II

Here are the open questions and Likert item questions
that we used in our online questionnaire for the live coding
community study:

1) What tools / technologies do you use for live coding?
(e.g., SuperCollider, TidalCycles, Gibber; ixi lang, Sonic
Pi, EarSketch, own-built environments/code...)

2) What tools / technologies do you use for collaborative
music live coding? If different from above, briefly explain
why.

3) What tools / technologies do you use / would you like to
use for communicating between your peers in collabora-
tive music live coding (e.g., embedded chat, video, instant
messaging apps...)? Briefly explain why.

4) Do you prefer to work as either a duo live coding, a trio
live coding or a group with more than three live coders?
Briefly explain why. (Type N/A if not applicable).

5) What roles do the group members take? Do you switch
roles? Briefly explain how and why. (Type N/A if not appli-
cable).

PREPRINT

6) In collaborative music live coding, I prefer to use emoti-
cons to communicate between my peers during the perfor-
mance or session. (1-5: Strongly disagree—Strongly agree,
choose 0 if not applicable).

7) In collaborative music live coding, I prefer to use short
messaging service (SMS) texting to communicate between
my peers during the performance or session. (1-5: Strongly
disagree—Strongly agree, choose 0 if not applicable).

8) In collaborative music live coding, I prefer to use pro-
vided hashtags (e.g. "#req”, "#go”, "#run”) to communi-
cate between my peers during the performance or session.
(Strongly disagree—Strongly agree, choose 0 if not applica-
ble).

9) In collaborative music live coding, I prefer to use our
own invented hashtags to communicate between my peers
during the performance or session. (Strongly disagree—
Strongly agree, choose 0 if not applicable).

10) In collaborative music live coding, I prefer to have
notifications on the screen from my other peers to com-
municate between us during the performance or session.
(Strongly disagree—Strongly agree, choose 0 if not applica-
ble).

11) In collaborative music live coding, I prefer to be able
to comment on the side of the code during the performance
or session. (Strongly disagree—Strongly agree, choose 0 if
not applicable).

12) In collaborative music live coding, I prefer to use mul-
timodal notifications (e.g., buzzers on the body, sounds)
during the performance or session. (Strongly disagree—
Strongly agree, choose 0 if not applicable).

13) In collaborative music live coding, I prefer to use
a turn-taking mechanism mediated by the system during
the performance or session. (Strongly disagree—Strongly
agree, choose 0 if not applicable).

14) In collaborative music live coding, 1 prefer multi-
editing a shared script (like in GoogleDocs) during the per-
formance or session. (Strongly disagree—Strongly agree,
choose 0 if not applicable).

15) In collaborative music live coding, I prefer that each
live coder edits its own script during the performance or
session. (Strongly disagree—Strongly agree, choose 0 if not
applicable).

16) In collaborative music live coding, I prefer to use
a color-coding scheme applied to represent the different
peers who are contributing to the code/chat during the per-
formance or session. (Strongly disagree—Strongly agree,
choose 0 if not applicable).

17) In collaborative music live coding, I prefer to use a
mechanism that shows active users vs. idle users during
the performance or session. (Strongly disagree—Strongly
agree, choose 0 if not applicable).

18) In collaborative music live coding, I prefer to use an
embedded chat next to the code during the performance or
session. (Strongly disagree—Strongly agree, choose 0 if not
applicable).

19) In collaborative music live coding, what type of graph-
ical user interfaces or chat interactions would you prefer?

PREPRINT

20) If your system had a chat to communicate with the
other group members, what kind of invented hashtags
would you use? Briefly explain why.

21) How could the system shown in the video fit in your
music creative workflow? Please, describe briefly.

TURN-TAKING AND ONLINE CHATTING IN CMLC

22) How would you improve the system shown in the video
to better improve your workflow?
23) Any additional comments or suggestions?

THE AUTHORS

Anna Xambo Gerard Roma

Jason Freeman

Anna Xambb is a postdoctoral researcher at the Centre
for Digital Music, Queen Mary University of London. She
was previously a postdoctoral researcher at the Center for
Music Technology and Digital Media Program (Georgia
Tech). Her research looks into the design and evaluation
of new interactive systems for music performance, pub-
lishing in international conferences and journals, such as
NIME, ToCHI, CHI, TEI, and IwC. Her musical practice
includes live coding, multichannel spatialization, tangible
music, collaborative interfaces, audience participation with
mobile devices, and real-time music information retrieval.
Dr. Xambé is co-founder of the organization Women in
Music Tech at Georgia Tech.

Gerard Roma received his Degree in Philosophy from
Universitat Autonoma de Barcelona (UAB) in 1997. Af-
ter several years working in software development, he ob-
tained his M.Sc (2008) and PhD (2015) in Information
and Communication Technologies from Universitat Pom-
peu Fabra (UPF). He is currently a Research Fellow at the

Pratik Shah

Takahiko Tsuchiya

Brian Magerko

Centre for Research in New Music (CeReNeM), University
of Huddersfield (UK).

Pratik Shah is a graduate from Georgia Institute of Tech-
nology where he got his masters in Human-Computer In-
teraction. He worked on the EarSketch platform for 2 years
during his graduate program. During this time he led all
design efforts related to EarSketch. His interests lie in In-
teraction Design, Ubiquitous Computing and Story-telling
and has published work in these areas before. He is cur-
rently working as an Experience Designer with the Global
Print division at HP.

Takahiko Tsuchiya earned his master’s degree in mu-
sic technology from the Georgia Institute of Technology,
where he continues as a doctoral student. His primary re-
search interests are data sonification and analytics, includ-
ing the development of data-agnostic frameworks and data
encoding in musical structures. In the EarSketch project,

XAMBO ET AL.

he develops the client-side technology including the public
version of the real-time collaboration feature.

Jason Freeman is a Professor of Music at Georgia Tech.
His artistic practice and scholarly research focus on using
technology to engage diverse audiences in collaborative,
experimental, and accessible musical experiences. He also
develops educational interventions in K-12, university, and
MOOC environments that broaden and increase engage-
ment in STEM disciplines through authentic integrations
of music and computing. His music has been performed at
Carnegie Hall, exhibited at ACM SIGGRAPH, published
by Universal Edition, broadcast on public radio’s Perfor-
mance Today, and commissioned through support from the
National Endowment for the Arts. Freeman’s wide-ranging
work has attracted support from sources such as the Na-
tional Science Foundation, Google, and Turbulence. He has
published his research in leading conferences and journals

PREPRINT

such as Computer Music Journal, Organised Sound, NIME,
and ACM SIGCSE. Freeman received his B.A. in music
from Yale University and his M.A. and D.M.A. in compo-
sition from Columbia University.

Brian Magerko is Associate Professor of Digital Me-
dia in the School of Literature, Media, and Culture and a
Human-Centered Computing faculty member in the School
of Interactive Computing at Georgia Tech. He earned a B.S.
in Cognitive Science from Carnegie Mellon University
and a Ph.D. in Computer Science and Engineering from
the University of Michigan. Dr. Magerko’s work focuses
on developing a better understanding of social collabora-
tion and creativity between humans and artificial intelli-
gence; designing and developing computational media ex-
periences that inform and/or entertain; and using personal
expression as a means of engaging the public—especially
underrepresented populations—in computing.

